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FOREWORD

This report consists of three books prepared for the Langley Research Center of
NASA by the Re-entry Systems Organization of the General Electric Company.

This work has been prepared under Contract No. NAS 1-8098, Mars Hard Lander
Capsule Study, The first written report was submitted on July 31, 1968 and has
been assigned NASA CR number 66678, This second report describes work accomp-
lished during the contract extension period since that date,

The three books in this report contain the following information:

Volume I - Design study of a Mars 1973 Mission 1400 1b Hard Lander. This
design contains approximately 60 lb of science instruments (exclusive of power,
telemetry and supporting equipments) and in conjunction with a Flyby Support
Module, relays 30 million bits of imagery data. About one hundred thousand
bits of life detection, geological and meteorological data are transmitted direct
to Earth over a 3 day period. Broad analysis and specific design investigations
have led to the conclusion that this is a completely practical design approach to
meet all objectives of early Mars exploration.

Volume II - A feasibility study of Autonomous Hard Lander Capsules suitable for
Mars 1973 missions. This study has considered an autonomous Capsule which is
essentially a self-contained landing system, The mission was analyzed and hard-
ware identified to enable the Capsule to perform all functions from booster separ-
ation to the end of the surface mission. It is concluded that this approach is not
the optimum way to fulfill early Mars exploration objectives and should not be
continued at this time,

Volume III - Summary cost and schedule of feasible implementation plans for
Hard Landers in 1973,
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1. SUMMARY AND INTRODUCTION

1.1 OBJECTIVE OF AUTONOMOUS STUDY

As part of the Hard Lander studies performed for the Langley Research Center of
NASA, General Electric was assigned a task of evaluating Autonomous Landers. This
evaluation was an overall view of all mission, system, and implementation aspects

in order to formulate a recommendation as to whether further study is warranted.

The types of spacecraft being considered for the '73 Mars opportunity are:
1. Out-of-Orbit Lander with Orbiting Support Module (Orbiter)
2. Direct Entry Lander with Orbiting Support Module
3. Direct Entry Lander with Flyby Support Module
4. Autonomous Lander with Cruise (only) Support Module,

For these studies, GE elected to subdivide the class of Autonomous Landers into the
following:

a. Truly autonomous (all communication is direct to earth from Lander), the
Support Module has no functions after Entry Vehicle separation.

b. Direct Entry Lander with Support Module serving as trailing relay station
after Entry Vehicle separation. (Prior to entry, the Support Module is
time separated from the Lander so that it may serve as a relay station through-
out the Lander's entry phase. The Support Module impacts the planet.)

¢. Direct Entry Lander with relay Support Module deflected to flyby planet.
(This Support Module must be sterilized since it is on an impacting tra-
jectory and, in the event of an equipment failure, could violate planetary
quarantine).
These three types of Autonomous landing capsules were also compared to a non-sterilized
Flyby Support Module where the Capsule is deflected into the planet. This broad scope
was considered to insure that no attractive option was overlooked.

1.2 STUDY ALTERNATES

To keep the study specific and meaningful, an Autonomous Reference Mission was
formulated. This Reference Mission (Section 2 of this volume) was intended to be
within the capability of a Titan IIIC booster and to optimize the direct earth communica-
tion. For the Autonomous Capsule, a South latitude landing site was required to

1-1



provide Earth visibility of entry. For relay concepts the desired 10° to 20°N latitude
was used. The launch energy of 20 km?2/sec? is actually beyond the Titan ITIIC capa-
bility for the transfer weights cstimated in later stages of the study. An iteration
considering missions that require less launch energy and/or Landers/Support Modules
with lesser capabilities has not been performed, as the eventual conclusion is already
apparent,

The possible Spacecraft configurations were evaluated. These configurations include
placing the Support Module inside (sterilized) and outside (non-sterilized) the canister
(biobarrier). Leaving part of the canister in Earth orbit or carrying it to interplane-
tary transfer was also studied. None of these variations had a first order effect upon
the Lander mission if arguments concerning recontamination are momentarily set
aside.

The stabilization mode for the cruise phase was evaluated (Section 3.0). The two
basic options of spin-stabilized and 3-axis stabilized were considered. It was con-
cluded that a spin-stabilized mode was slightly lighter (in the order of 50 1b) but would
require more development than adopting the Mariner 3 axis-stabilization subsystem,
equipments, and software. In considering available spin options, it was concluded
that it is better to point the spin axis at Earth rather than at the Sun or perpendicular
to the ecliptic.

The Autonomous Lander utilized for this study had an entry weight of 1676 1b  with
maximum entry angle of 32°, The landed weight is 956 1b which includes 60 lb of
science and extended lifetime capabilities. The Lander which utilizes the Support
Module as a relay station has a landed weight approximately 150 b less. The weight
difference is partially offset by increase in Support Module weight and does not have

a first order influence on study conclusions. It is apparent that, if surface imagery
of 107 bits or more is to be transmitted from a Lander of this weight class, a re-
generative power source is required to extend the lifetime,

1.3 SUMMARY
This study has identified that:

1. No substantial weight reduction is available {or the truly Autonomous Capsule.
The entry data direct to Earth requires so much equipment and power to
establish & marginal link as to more than offset any saving in the Support
Module. (See table 1-1 for weight comparisons.)

2. The trailing Support Module is definitely inferior to the deflected Support
Module in its capability to support the relay link. Since the hardware imple-
mentation is nearly identical (slight difference in size of propellant tanks),
the deflected relay Support Module is preferrable.
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3. Once the concept of a relay Support Module, which must function independently
from and simultaneously with the Lander, is adopted, there is no substantial
equipment saving over conventional approaches; the sterilization requirement
only complicates the problem.

4. A non-sterilized Support Module has the advantage of being able to utilize tape
recorders for data storage; hence, it can support accumulation of much more
information and retransmit to Earth for days or weeks after encounter. An
Earth and Sun occulation may occur after encounter, but mission and hard-
ware design can be modified so that this should not be a serious impediment.

Based upon the studies performed, GE has recommended that Langley Research Center
not implement further work on the Autonomous concept for 1973,

1.4 LANGLEY RESEARCH CENTER GUIDELINES

The NASA-LRC provided guidelines for the study are reproduced in the following portion
of this report. The single guideline which had the greatest impact on the Autonomous
Lander is "Entry data must be obtained independent of landing success.” The com-
munication problem of establishing a direct-to-Earth link during entry into Mars

drives the Lander design. Even when accepting significant implementation penalties, a
a barely adequate 200 bps data return is not assured until parachute retardation has
slowed the descent. This is not considered a practical mode and therefore it is con-
cluded that real time entry data transmission should utilize a relay link.

"In addition, an Autonomous Capsule shall be studied for a Direct Entry mission with a
maximum weight of 1700 1b and a Capsule diameter not to exceed fifteen (15} ft.

1.4.1 MODIFIED GUIDELINES

Launch vehicle to be T-IIIC,

Two Spacecraft to be launched.

Mode of delivery shall be direct entry.

Entry and surface science are of a higher priority than orbital science.

Minimum Lander lifetime on the surface shall be three days.

S s W N

Minimum data return shall be 107 bits. Data compression techniques may
be feasible to reduce the number of bits to be transmitted to Earth.

-3

Entry data must be obtained independent of landing success.

8. Minimum time-of-arrival separation shall be 10 days to allow preliminary
analysis of the entry data and surface science data from the first Lander
before second Lander entry is committed.



10.

11.

12,

13,

14,

15,

16,

17.

The existing DSN net of three 85 ft and one 210 ft antenna facilities can be used.
An additional 210 ft antenna may also be assumed.

Minimum launch period to be 30 days.
Minimum launch window to be two hours.
Available launch azimuth range to be 45° - 115°,

For the Mars '73 Mission, the probability that Mars will be contaminated
shall not exceed 4 x 107°

An Orbiter or Support Module may be used to support the Lander during cruise
and to provide relay communications,

8
Data return goal is 10 bits.,

It shall be a goal that the Lander be designed to have a 90-day lifetime with
the use of regenerated power,

Science Payload - The science payload defined in table 1-2 represents a highly
desirable complement of scientific measurements for the Mars '73 Mission.

It is anticipated that because of the present economic constraints for the '73
Mission, the entire instrument complement cannot be accommodated, neces-
sitating that the payload be considered a shopping list. To be able to realistically
utilize the defined payload, it shall be assumed that within the entry and sur-
face groups the experiments are given in an order to priority. The specific
instruments and their associated characteristics are defined to provide con-
tinuity for subsequent studies and should not be considered a final payload
selection for the '73 Mission. Similarly, it can be anticipated that future
planning activities and design studies will result in modifications to the pay-
load both in the instrument selection and the specified characteristics."
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TABLE 1-2,

SCIENCE PAYLOAD DEFINITION

. Weight Data
Objective Instrument ; ! ’
j Power, (Watts) (Ibs) (bits*)
ENTRY
Atmospheric Capacitance Diaphragm 3 3 2 x 104
Structure Platinum Resistance 1 1 10
Thermometer
Accelerometer Triad 4 4 109
Atmospheric
Composition Mass Spectrometer 8 avg., 11 peak 8 6 x 104
HoO Vapor | Al,O, Hygrometer 1 2 5 x 103
SURFACE
Imagery Facsimile 10 5 1()7
Atmospheric GCMS/ Pyrolysis
Comp. /Organic 35 w/pyrolysis
Compounds 20 GCMS only 16 109
Biology Hybrid (Multi-cell) 10 8 103
Life Detection
Soil Sampler*+* 10 2 102
Atmospheric
HoO Al; 05 Hygrometer 1 1 103
Subsurface
HyO Al,04 Hygrometer w/probe 5 3 103
Atmospheric Platinum Resistance
Temperature Thermometer 0.5 1 103
Atmopsheric
Pressure Capacitance Diaphragm 1.4 1 103
Wind Velocity | Cup Anemometer 2,2 2 103

*Data compression techniques may be feasible to reduce the number of bits to be
transmitted to Earth.

**The soil sampler is required to provide a sample to both the GCMS/pyrolysis and

biological instruments.
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2. MISSION CONSIDERATIONS

2.1 REFERENCE MISSION

In the context of assessing the feasibility of an Autonomous Capsule, this section dis-
cusses two mission related aspects: the relay communication between the Capsule and
a Support Module, and the direct communication between the Capsule and the Earth,

A specific example is shown for the relay communication, in which the Support Module
follows the Capsule in the same trajectory, i.e,, a "trailing relay Support Module",

It is scen that the Support Module is never high enough above the Capsule's horizon for
relay communication to be securely established, Therefore, the relay communication
must necessarily be with a Support Module on a flyby trajectory. The success of the
relay depends then on the entry time and its dispersion throughout the range of atmos-
pheres, in the same manner as has been described in earlier studies.

With respect to a direct to Earth link, it is shown that in the practical '73 missions
(Type 1, C5 < 20 kmz/sec2) the Earth is generally near the landing point horizon,

By choosing the latest possible arrival dates consistent with mission constraints, the
Earth elevation at the landing site (near time of landing) may be about 30°, just enough
to have a short amount of time available for direct communication (the Earth is setting).

2.1.1 RELAY COMMUNICATION GEOMETRY BETWEEN CAPSULE AND SUPPORT
MODULE

The Capsule-Support Module geometry is illustrated in fig. 2.1-1 for the case where
the Support Module follows the Capsule in a trailing trajectory. The case illustrated
here is typical for the '73 Type 1 missions; the approach velocity is 3 km/sec and the
Capsule entry path angle is 25°. To obtain sufficient time of arrival separation, the
Support Module is separated from the Capsule with a separation velocity of 60 m/sec,
It is seen in fig. 2.1-1 that the incoming trajectory lies close to the landing point
horizon; therefore, the Support Module's elevation over the landing horizon is always
small. In the case illustrated, the maximum elevation is 12°, which is too low for a
good relay link, For smaller entry path angles, the Support Module trajectory will lie
even closer to the Lander horizon.

Thus, if a relay link is to be considered, the Support Module must be on a flyby
trajectory. The design of the flyby trajectory depends on the time from entry to landing,
in particular on the spread in entry time due to the unknown atmosphere. This aspect

of the mission design has been discussed in detail in earlier studies. It was found

that with an entry time differential of 800 sec, the flyby trajectory could be designed
such that the Spacecraft would always be at an elevation greater than 34° at the time of
landing. The periapse altitude was 1000 km,
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Figure 2,1-1. Trailing Support Module



Entry times in different atmospheres are shown in table 2. 1-1 for three cases. The
parachute is assumed to be deployed at Mach 2 in any atmosphere. The third case, with
aeroshell ballistic coefficient equal to 8.7 1b/ft2 and a parachute designed for 100
ft/sec terminal velocity at zero altitude in the MEAN atmosphere, is the one to be
considered for the Autonomous Capsule, The entry time differential (i.e., the dif-
ference in entry times in the MIN and MAX atmospheres) is 745 sec and therefore,
the flyby trajectory design and the Capsule-Support Module geometry are nearly the
same as in the earlier studies. For the sake of comparison, table 2,1-1 also shows
two other cases. The first is designed for 150 ft/sec terminal velocity in the MEAN
atmosphere and shows a 487 sec entry time differential in the MIN-MEAN-MAX range
of atmospheres. The second case is designed for 100 ft/sec terminal velocity in the
VM-7 atmosphere and has a 1294 sec differential of entry times in the VM range of
atmospheres. If the design must be based on full range of VM atmospheres it can

not be guaranteed that the Lander will always see the Support Module at the time of
landing (unless the periapse altitude is increased to about 2000 km).

Note that in this discussion the parachute was designed for a specific terminal velocity
in the MEAN atmosphere; this is because at zero altitude the atmospheric density is
smallest in the MEAN atmosphere, If the parachute were designed for a specific
terminal velocity at some altitude, say 6000 ft, the MIN atmosphere would be used.
This has little influence on the entry time differential, which is the important param-
meter in previous discussion.

2.1,2 DIRECT TO EARTH COMMUNICATION GEOMETRY

The design of a direct communication link is greatly dependent on the declination of
Earth with respect to the Mars equator at the time of landing. This declination is
shown in fig. 2,1-2 for the arrival times of interest in 1974, Note that the Earth's
declination increases, so that for northern landing latitudes late arrivals would be
preferred. In considering landed operations for some extended duration, northern
landing latitudes are preferred because the Sun's position is generally north of the
equator, as shown in fig. 2.1-2. On the other hand, if an early arrival date should
be required, a southern landing latitude would be preferable from the point of view
of a direct communication link,

One way in whicha Lander Capsule may be made independent of a Spacecraft or Support
Module is to provide a direct communication link, For this, it is necessary that the
Earth is well above the landing horizon at the time of landing, as well as during the
entry portion of the Capsule trajectory. Figure 2,1-3 shows a typical arrival con-
figuration with arrival date 1 February 1974, It is seen that the Earth is very near

the landing horizon, so that in this case there exists no direct link, This situation
may possibly be improved by either choosing a very early arrival, so that the Earth

is on the other side of the approach asymptote, and a retrograde approach, or by
choosing a late arrival, such that the angle ZAE (see fig. 2.1-3) is much smaller,
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TABLE 2.1-1. TIME FROM ENTRY TO LANDING

Y = 25 DEGREES PARACHUTE DEPLOYMENT AT MACH 2
= . S
VINF 3.216 KM/SEC
VE = 19,325 FT/SEC
VEHICLE AND PARACHUTE
F
DEFINITION ATM TEI BEI vI
60° SPHERE/CONE SEC DEG FT/SEC
2
W/CpA = 9 LB/FT MIN 227 9.7 142
VoERM 150 FT/SEC, MEAN MEAN 365 9.3 147
cD PAR 12.7 MAX 714 8.4 120
W/CpA = 8.7 LB/FT2 VM 8 349 9,7 70
= F 3 3
VTERM 100 FT/SEC, VM 7 VM 7 48 9.3 98
CD PAR 76.6 VM 9 1643 8.3 49
W/CpA = 8.7 LB/FT? MIN 284 9.7 93
VTERM = 100 FT/SEC, MEAN MEAN 492 9.2 98
= o1, 29 .
CD PAR 27.5 MAX 10 8.4 79
TEI = TIME FROM ENTRY TO LANDING
BEI = CENTRAL ANGLE FROM ENTRY TO LANDING
\Y = LANDING VELOCITY

I
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TRAJECTORY

TO SEE EARTH AT LANDING:
1) LATER ARRIVAL
OR 2) EARLIER ARRIVAL

Figure 2.1-3. Mars 1973 Approach Configuration
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with a posigrade approach., The possihbilities for early and late arrivals are identified
in the Basic Mission Planning Chart, fig, 2,1-4. The mission points available for
consideration lie inside the curve for C3 = 20 kmz/sec2, corresponding to a Spacecraft
weight of 2100 lb. A small part of this area is cut off by the line of constant declina-
tion of launch asymptote equal to 45°. This limit is consistent with launch azimuth
limits of 45° and 115°, and a 2 hr minimum daily launch window, (according to
information from a Martin-Marietta supplied by NASA-LRC by letter dated 28 August
1968,) Two pairs of lines, marked 1 and 2, identify the earliest and latest possible
arrival dates, consistent with a 30 day launch period. The lines in each pair are

days apart in arrival date, in accord with the requirements of having a 10 day sepa-
ration in arrival of two missions. The early arrival lines are approximately parallel
to the constant entry velocity lines; the late arrival lines are about parellel to constant
ZAE angle lines,

The elevation of Earth at the landing site at the time of landing is shown for a typical
early arrival mission with retrograde approach (launch 10 July 1973, arrival 6 Jan-
uary 1974) in fig. 2.1-5. This shows that with an entry path angle equal to 25° the
best elevation which can be obtained is about 10°, To obtain this, a southern landing
latitude of 20° is required, For northern landing latitudes the Earth's elevation is
even smaller. Thus, for all possible early arrivals the Earth's elevation over the
landing horizon is too small for a direct communication link to be possible. The only
consideration which may slightly offset this is the fact that the Earth is rising, so
that within a few hours after landing, a direct link does become possible.

The Earth's elevation at landing is similarly shown for two typical late arrival mis-
sions (with posigrade approach) in fig. 2.1-6. The best results are obtained for a 10°
southern latitude; the elevation may be about 35°, if the entry path angle is 25°. For
the preferred nothern latitude the elevation maybe as small as 20° (arrival on

27 February 1974) or a little more than 30° for a more advantageous arrival date

(13 March 1974). Note that the elevation is less sensitive to arrival date for the
southern landing latitude missions.

The arrival configuration for a typical late arrival case (launch 13 August 1974,

arrival 17 March 1974) is shown in fig. 2.1-7. Note that the Earth is located well
above the landing horizon, so that a direct link is possible (at least geometrically).

But is must also be noted that, if entry path angle dispersions are considered, the
landing point may move toward the evening terminator, so that the Earth moves closer
to the landing horizon. Within the mission constraints (see fig. 2.1-4) better Earth
elevations can be obtained only by having a steeper entry, which moves the landing
point away from the evening terminator and towards the Earth (on a posigrade approach).
However, any entry path angle greater then 25° has a bad influence on the aeroshell
weight, In fact, it would be desirable to decrease the entry path angle; considering
entry path angle dispersion, (depending mostly on the impact parameter error) the
entry path angle could be taken as small as 21°, but that would cause the Earth elevation
to he too small for a direct link to exist (as follows from fig. 2.1-6).
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Figure 2.1-7, Earth Visibility at Landing, Late Arrival

In summary it must therefore be stated that the geometrical condition for a direct to
Earth communication link can be obtained but only by pushing all the mission con-
straints. Even then, the existance of a direct link is only marginal, when entry path
angle and downrange dispersions are considered,
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2.2 ENTRY COMMUNICATIONS

In mission modes where a flyby Support Module is considered, the use of a relay link
for the return of entry data is the preferred approach. However, for the mission
mode in which the Support Module has no relay capability, entry data must either be
transmitted directly to Earth during entry, or stored for transmission after landing.
The latter approach is unacceptable as the prime means for obtaining entry data, al-
though it may be used as a backup to real time transmission. Therefore, a direct
link during entry must be provided. In this section of the report, a concept for a
direct link that will support a data rate of 200 bps during the later portions of entry is
described. Although this rate is so low as to be only marginally acceptable, the com-
munication concept appears to be practical and it is; therefore, presented as a basis
for sizing the Capsule to allow an evaluation of the mission mode to be made., Follow-
ing the description of the direct entry link performance, the performance achievable
with a relay link to the flyby Support Modules is presented.

2.2.1 DIRECT ENTRY LINK

During the entry period during which communication to Earth is required, the Capsule
attitude relative to the line of sight from the Capsule to Earth changes through nearly
90° as the Capsule pitches down from a low angle relative to the local horizontal at
high altitudes, to a nearly vertical descent near impact. Furthermore, the Capsule
roll attitude with respect to the direction to Earth is not controlled in position (only

in rate). As will be discussed, it turns out that essentially a full hemisphere must

be covered by the Capsule antenna if continuous communication is to be attempted.
Thus, the antenna will provide only a very low gain unless means are used to point one
or more antennas to Earth during the entry period, which lasts a maximum of about
10 min. It is considered impractical to provide such a pointing system and the
recommended approach uses four fixed broad beam antennas, each driven by indepen-
dent 100 watt transmitters capable of supporting a data rate of 55 bps each. Because
of the relatively large uncertainty in the frequency of the signal received at Earth
caused by Doppler shift and transmitter frequency drift, pre-detection recording is
required in order to eliminate the need for real time acquisition by the ground receivers.
Multiple frequency shift keying of the transmitters is employed.

The ability of a system to achieve a high data rate is limited by constraints on trans-
mitter power, antenna element gain, and the achievable modulation and detection ef-
ficiency. Following is a discussion of the nature of these constraints.

Maximum transmitter power is limited by breakdown of the antenna in the Martian

atmosphere. Based on previous experimental work, it is assumed that with reasonable
care in antenna design, 100 watts of transmitted power is feasible.
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Maximum gain of an antenna elementfixed to the vehicle is limited by the view angle vari-
ations and uncertainty between the Capsule roll axis and Earth; i.e., the antenna
pattern must cover the range of angles off the roll axis that could be encountered.
Symmetry about the roll axis is required because there is no preferred Capsule roll
angle. The minimum angle off the roll axis occurs at parachute deployment when

the Capsule velocity vector is pointed very nearly directly away from Earth. The
maximum angle occurs near Capsule impact when the vehicle is descending vertically
with the addition of some swing on the parachute.

For this analysis, parachute swing is assumed to be a maximum of 20°. The anglebetween
Capsule roll axis and Earth, assuming the roll axis aligned to the local vertical, is
strictly a function of the Earth/landing site geometry at the time of impact. The ideal
situation near impact is one in which the landing site local vertical points directly at
Earth. The antenna beamwidth then needs only to be 40° to account for the +20° para-
chute swing. In reality, however, launch considerations require that the landing site
be a considerable angle from the sub-Earth point. Tor a 10°N landing site (the prefer-
red latitude) this angle has been found to be a minimum of 54° and a maximum of 79°
(corresponding to entry angles of 30° and 20° and arrival dates of 13 March 1974 and
27 February 1974, respectively). For the best of these two cases, the maximum angle
off the roll axis would be 74° (54° + 20° parachute swing) and in the worst case the
maximum angle would be 99°, The latter case not only implies the requirement for

an antenna pattern giving greater than hemispherical coverage, but also indicates

that the Earth can be as low as 11° above the horizon at Capsule impact. There is

a reasonable probability; therefore, that the line-of-sight to Earth would be blocked
even if a 10°S landing site is accepted. Inthis casetheanglesfrom local vertical to Earth
are 47° minimum and 68° maximum instead of the 54° and 79° cited for the 10°N landing
site. Including £20° of parachute swing the pattern coverage off the Capsule roll axis is now
88° worst case and the minimum Earth elevation at impact is 22°. The latter num-

ber is a significant improvement in probability of line-of-sight to Earth at impact,

and the 88° implies that hemispherical antenna coverage will suffice. Even this,
however, is not a simple requirement because it requires that the antenna element
have an unobstructed view over a hemisphere at the rear of the Capsule. If multiple
elements are to be used, some extent of mutual blockage is unavoidable. For a single
element, hemispherical coverage with a minimum of 0 dB gain appears to be a realis-
tic goal.

Doppler characteristics of the signal play an important part in the efficiency of a
modulation and detection technique. To limit the problem to some extent, it is as-
sumed that reception will be attempted only after the parachute is deployed. Some
indication of the problem can be obtained by the following. At the time that the para-
chute opens (Mach 2), the Capsule velocity vector is pointing in the general direction
away from earth. The Doppler frequency is in the order of 3500 Hz. At impact the
velocity is more nearly perpendicular to the Earth line-of-sight and the velocity is
of the order of 100 fps, resulting in very little Doppler. Essentially, the full range
of about 3500 Hz will be observed from parachute deployment to impact.

2-13



At Earth, the time of parachute deployment cannot be predicted better than within a

few minutes. In addition, the Doppler profile is not completely predictable since it
depends on parameters such as entry angle and atmosphere, which are known only
within limits, This uncertainty of transmission period and Doppler profile make
real-time detection impossible with the relatively low received signal level expected.
Regardless of the modulation and detection technique assumed, predetection recording
of awide bandwidth and a subsequent signal searchprocedure are required. The modulation

and detection technique should be selected to minimize the required E/Nyunder these conditions.

2.2,1.1 Baseline System

There are several approaches to the design of a direct link system. To obtain a
baseline for further discussion, a transmission system consisting of a single trans-
mitter and antenna element will first be considered.

It is assumed that 100 watts can be transmitted without breakdown and that hemi-
spherical antenna coverage can be achieved with minimum gain of 0. 0 dB including
all pointing and polarization losses. Furthermore, it is assumed that the DSIF 210 ft
dish can be used in the listen-only mode and the elevation of the dish during reception
can be greater than 20°. Under these conditions the receiving system parameters to
be expected are 28°K system temperature and 61 dB gain, worst case, Mars-Earth
range is assumed to be 225 x 108 kilometers, corresponding to an arrival date of

13 March 1974. The link calculations of table 2. 2-1 then indicate that the S/N0 avail-
able is 26.7 dB worst case. Since data rate is equal to S/NO divided by the overall

E /N0 required per bit, the question now becomes: what is the minimum achievable
E/No considering the uncertainty in signal dynamics due to doppler discussed earlier?

A direct answer is unavailable; however, some indication can be obtained by noting
that with no Doppler and using PSK/PM, the achievable data rate is 50 bps uncoded
and 90 bps coded (32, 6 biorthogonal) assuming a 12 Hz double-sided carrier loop
bandwidth (ref. 2.2-1,). This indicates E/N0 values of 9.7 and 7.2 dB, res-
pectively, including carrier requirements. About half the total transmitted power

in each case is in the carrier. The resulting carrier-to-noise-density ratio (C/NO)

of about23 dBgives, for instance, 6 dBSNRin a 50 Hz bandwidth which should he adequate
to at least find the signal in the recorded data and to be able to track out the Doppler
to some extent. Of course, the ability to obtain a carrier phase lock which is adequate
for efficient sideband demodulation is dependent on how much frequency offset and
phase jitter remain after the major portion of the Doppler has been extracted. A guess
at this point is that at the S/N, value being considered, a coherent coded link could be
established with an overall E/N0 of the order of 10 dB.

A prediction that appears less risky is that the Doppler can be tracked out to within a
few Hz, even with a reduction of several dB in constant-frequency carrier power,

This suggests the potential application of noncoherent detection. Although a straight
FSK link with noncoherent detection would be applicable, greater efficiency would be
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TABLE 2.2-1. LINK CALCULATIONS (ALL VALUES WORST CASE)

Transmitted Power (100 W worst case) 50.0
Transmitting Circuit Loss - 1.4
Transmitting Antenna Gain 0. 0%
Space Loss (R = 225 x 106 KM) -266.7
Receiving Antenna Gain (> 20° El.) 61.0
Receiving Antenna Pointing Loss - 0.3
Receiving Circuit Loss - 0.0
Total Received Power -157.4
Receiver Noise Density (Tg = 28°, Non Diplexed) ~-184.1
S/ N0 Available 26.7
*Worst case over hemisphere including all pointing and polariza-
tion losses

obtained from a multiple frequency shift keyed (M FSK) link, For instance, an MFSK
link with 32 different frequencies each defining 5 bits of information has a theoretical
E/NO requirement of about 4.4 dB (ref, 2.2-2) for a word error probability of 10™2
(bit error probability of 5 x 10-3 for independent bits). An assumed allocation for the
factors leading to the overall expected E/N, is as follows:

E/No (theoretical) 4.4 dB
Non Matched Filter (IF) 2.0 dB
Sync Power (25 percent) 1.3 dB
Word Sync Jitter Loss 0.5 dB
Predetection Recording Loss 1.0 dB

Overall E/NO 9.2 dB
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Here, every fourth pulse has been allocated to a single frequency for the purpose of
Doppler determination and word sync. A functional block diagram of the detection
process is shown in Fig. 2.2-1 where {(t) represents the entire transmitted signal,
£4(5) represents the extracted Doppler information, and fn(t) is the signal at the nth
frequency of the 32 transmitted frequencies (f1(t) is the sync signal). It is expected
that many of the functions would be accomplished by computer.

Although this scheme might not be better than the coherent link and certainly is not
expected to be the optimum scheme, its tolerance for Doppler uncertainty of several
Hz gives some confidence that a scheme can be defined with an E/N0 of around 10 dB.
An indication of Doppler tolerance can be obtained by assuming it equal to about one-
fourth the bandwidth of an individual pulse. Since the data rate is 50 bps (Rp (dB) =
S/Ng - E/Ng = 26.7 - 9.2 = 17.5 dB), then the pulse rate is 10 pulses/sec (5 bits/
pulse) and the bandwidth of each pulse between the first spectral nulls is 10 Hz, The
Doppler tolerance is then in the order of 5 Hz.

Following is a summary of the characteristics of the baseline system:

Data Rate : 50 bps
Transmitted Power : 100 watts minimum
Antenna Gain : 0 dB minimum

Prime Power Required ¢ =300 watts (PA + exciter)
Weight : 10 to 15 Ib (PA + exciter +

antenna and cable, excludes
thermal control)

2.2.1,2 Alternate System

The baseline system does not come close to the minimal 200 bps data rate. However,
this rate could be achieved by flying four of the baseline systems, fig., 2.2-2. This
would provide a total data rate of 200 bps with the possibility of some loss of data due
to line-of-sight interference between antennas when the Earth direction is close to 90°
off the Capsule roll axis. Four links have been considered to be the maximum number
that could be tolerated in a weight basis (40 to 60 Ib of RF equipment); therefore,

200 bps is about all that can be expected from this basic approach.

To obtain a significant increase in data rate, it is necessary to increase antenna gain

(assuming that the 100 watts transmitted per antenna element cannot be increased
appreciably). This, inturn, implies a requirement for beam steering. Considerable
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work is required in this area to achieve a complete design study. From a pre-
liminary investigation; however, the indications are that, if feasible, beam-steering
techniques are complex, risky (from both a reliability and an operational viewpoint),
and/or heavy; usually all three.

2.2.2 RELAY LINK

In contrast to the entry direct 1ink, an entry relay link to the Support Module, fig.
2.2-3, can be designed to provide a data rate of 1000 bps or more. Also, if the ar-
rival of the Support Module at the planet is delayed relative to the Capsule arrival, the
relay link may be used for the transmission of imagery data from the planet surface.
The design studies reported in Volume I, Section 5. 2, show that the relay link can
support an 1100 bps data rate during entry, and transmitting at a rate of 70 kbps after
landing, can return a min of 2. 8 x 107 bits of landed data to the Support Module. For
those missions which require that the Support Module be sterilized, the feasibility of
relaying landed imagery is contingent on the development of a sterilizable tape
recorder,

2.2.3 REFERENCES

2.2-1 Mars Hard Lander Capsule Study, Capsule Parametric Study, Vol. III, Book
2, NASA CR 66678-4, 31 July 1968,

2.2-2 Lindsey, W.C,, '"Coded Noncoherent communications, "IEEE Transactions on
Space Electronics and Telemetry, March, 1965,
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2.3 LANDED IMAGERY

For a mission mode which does not include a Support Module with relay capability,
surface imagery data must be transmitted directly to Earth, In order to transmit the
minimum required imagery data load of 107 bits within the minimum mission life of
three days, the data rate, assuming an 8 hr daily transmission period, must be at
least 100 bps. Fig. 2. 3-1 shows that using a 20 watt power amplifier, an antenna gain
of 10 dB is required, Such an antenna would have a beamwidth of 50°, Allowing +32°
uncertainty in the Lander attitude on the surface due to slopes and crush-up of the
impact attenuétor, and taking into account uncertainties in the landing site location,
the minimum acceptable beamwidth of a body-fixed antenna is about 70°, Therefore,
a means of pointing the 50° beamwidth antenna is required. As long as orientation of
the antenna is required, even narrower beamwidth antennas can be incorporated with-
out significantly increasing the antenna system complexity, and thereby the require-
ments on the power subsystem can be reduced. It has been found possible to install a
24 dB gain antenna in the Lander, Such an antenna would have a beamwidth of 10°,
Allowing a maximum pointing error of 59, the minimum achieved gain would be 21 dB,
which as fig, 2.3-1 shows, allows a data rate of 2000 bps to be used, reducing the
required daily transmission time to less than 0,5 hr. The resulting saving in battery
energy requirements is more than 600 watt-hr/day.

Perhaps the simplest antenna pointing scheme is to erect the antenna axis to the local
vertical, Fig, 2.3-2 shows the beamwidth for a vertically oriented antenna that enables
the greatest amount of data to be returned, assuming that transmission takes place at

a constant data rate for the entire period that the line of sight to Earth lies within the
antenna 3 dB beamwidth. The 24 dB antenna with its 10° beamwidth is near the optimum
antenna for an early March arrival date at 10° south landing sites, This antenna is
useful throughout the month of March, and could be used effectively until early in April
when the declination of the Earth increases above -50, For operation at later dates,

the antenna would have to be pointed away from the local vertical toward the Earth, or

a broader beam antenna would be required.
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2.4 MISSION PROFILE

2.4.1 TRULY AUTONOMOUS

A sequence of events from launch to mission completion is shown by table 2, 4-1.

This describes a mission as defined for an Autonomous Capsule. The Support Module
performs propulsions and support functions for the entry vehicle during interplanetary
cruise. This module separates from the entry vehicle prior to entry and serves no
further function. All data is transmitted by a direct link system in the Lander. Fig.
2.4-1 is a graphical presentation of the first 48 hr of landed operations.

The sterilization canister forward section is separated while the Booster Transtage
and attached Capsule are still in Earth parking orbit, The Transtage/Capsule next
orients and injects into a Mars flyby trajectory. The Spacecraft then separates from
the Transtage and orients to an Earth pointing attitude and spins up for stabilization.
Corrections are made as required to maintain the pointing attitude and spinning
throughout the 215 day interplanetray cruise. Midcourse corrections are also per-
formed, to assure that the Capsule is on an impacting trajectory.

The entry vehicle separates from the Support Module 24 hr prior to entry. The Support
Module serves no further service. The Capsule continues on the impact trajectory and
continues spinning to retain stabilization.

Entry data is collected and transmitted real time to Earth via the direct link telemetry
system in the Lander Capsule. Deceleration is accomplished by parachute whose de-
ployment is actuated by a Mach 2, sensor.

After the Lander package impacts and comes to rest, camera, T/M, and meteorological
booms are deployed. Engineering data and meteorology measurements are performed
immediately thereafter, and transmitted direct to Earth by the S-band telemetry sys-
tem. Meteorology readings are continued at 20 min intervals and data stored., Landed
science (life detection, soil composition, etc.) measurements commence 18 hr after
impact with data stored. Initial science experiments are completed in 1 hr but subse-
quent life detection growth readings are performed every 20 min with storage data.

Twenty hr after impact, the S-band direct link telemetry and imaging systems are
turned on for a 1 hr period, Stored data and real time imaging data are transmitted
directly to Earth,

Meteorological and life detection reading and storage continue for the next 24, 6 hr.
The S-band telemetry and imaging systems are then turned on for a 1 hr period during
which all stored data and additional by real time imaging is transmitted directly to
Earth, Following shut down of the T/M system, the solar panel array is deployed.
Twenty minute meteorological readings continue for an additional 24,62 hr period.
The data from which is again transmitted directly to Earth during a 30 min S-band
T/M period.
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TABLE 2,4-1, TRULY AUTONOMOUS MISSION SEQUENCE OF EVENTS

A. Launch to Impact Time

1. Launch TL

2. Achieve Parking Orbit TL +12 min
3. Separate Biobarrier Canister Forward Section TL +30 min
4. Orient Booster Transtage for Interplanetary Trajectory TL +40 min
5. Inject into Cruise Trajectory TL +50 min
6. Separate Autonomous Capsule from Canister and TL +60 min

Transtage

7. Orient Capsule to Earth Pointing Attitude TL +60.1 min
8. Initiate Spin Stabilization to Capsule TL +60, 2 min

9, First Mid Course Maneuver (If Req'd) TL +30 days

To Assure

Impact Trajectory

10. Second Mid Course Maneuver (If Req'd) TL +205 days

11. Mars Arrival TL +215 days

12. Start Capsule Final Diagnostic Checkout TO (Entry-48 hr)

13. Complete Diagnostic Checkout TO +120 min

14. Update Programmers Complete T o +17 hr

15. Final Impact Trajectory Correction Mode (If Req'd) TO +20 hr

16. Turn on Lander Power, T/M, and Diagnostic Data T, (T +21 hr)

17. Capsule Or‘ients to Entry Attitude and Diagnostic Data T. +5 min
Transmitted to Earth for Verification 1

18. Entry Vehicle Separates from Support Module (Spin T2 (Tl +3 hr)

Stabilization Continues)
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19,

20,

21.

22,

23.

24,

25,

26.

27,

28.

29,

Support Module Deflected to a different Trajectory
Turn Entry Vehicle Power and T/M to Standby Mode
(Diagnostic Data Transmitted Direct to Earth 1 min/
1 hr during Pre-entry Cruise)

Turn on Entry Vehicle Power and Mass Spectrometer
Initiate De-spin

Turn on T/M and Entry Science

Entry

Mach 5 - Initiate Mass Spectrometer, Water Vapor, and
Temperature Sensor Readings

Mach 2 - Deploy Parachute
Aeroshell Separation
Jettison Parachute

Impact- Force Sensed and Stored

+2 i
T2 min

+4 mi
T2 min

T3 (T4 -15 min)
T3 +.5 min

+14 mi
T3 min

T, (T, +24.0 hr)

T4 +97 sec*

T4 +118 sec*

T4 +12 3 sec*

. *
T4 216 sec

+121 *
T5(T4 1217 sec)

* Entry Times Predicated on a Maximum Atmosphere

Landed Operations

1.

Lander Comes to Rest - Settlement and Up Direction
Sensed

Deploy Booms and Antennas

Transmit Diagnostic and Meteorology Data Direct
to Earth

Turn Off T/M System

Continue Meteorology Readings and Storage at
20 Min Intervals

Initiate Surface Science Experiments with Data Storage

Complete Initial Science Experiments

T6 ('I‘5 +2 min)

T6 +0,1 min
T . +.5 min

6

+10, 5 mi
5 min

T, (T +18 hr)

T7 +1 hr
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

2-26

Turn on Direct Link T/M and Imaging Systems

Transmit Stored Data Direct to Earth Via
S-band Antenna

Perform Meteorology and Imaging Experiments with
Real-time Transmission Direct to Earth

Turn Off Imaging and T/M Systems

Continue Meteorological and Life Detection Growth
Measurements at 20 Min Intervals and Store Data

Turn On S-band T/M and Imaging Systems
Transmit Stored Data Direct to Earth

Perform Meteorology and Imaging Experiments with
Real Time Transmission Direct to Earth

Turn Off Imaging and T/M Systems

Continue Meteorology and Life Detection Scattering
Readings at 20 Min Intervals and Store Data

Deploy Solar Array

Turn On T/M System
Transmit Stored Data to Earth
Turn Off T/M System

Continue Meteorological Measurement and Storage at
1 Hr Intervals with Daily Transmission to Earth,

Command Receiver Permits Variations in Sequence as

Desired by Earth Including Imaging at an Equivalent
Capability of 1/2 Hr Transmission Per Day.

+
Ty (T +20 hr)

T8 +0.1 min
T8 +5 min

T _ +1 hr

T9 ('1‘8+24.6 hr)
T9 +1 sec

T9 +5 min

+
'I‘9 1hr

T9 +1 hr

+1.5h
T9 T
T10 (T9+24. 6 hr)

+ .
T10 0.1 min

T10 +,5 hr
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Figure 2.4-1. Autonomous Flyby Landed Sequence of Events

The Capsule then switches to an extended life mode which is powered by solar panel
recharging of the battery. Meteorological measurements are performed at 1 hr in-
tervals with daily S~band transmissions to Earth. Lander includes a direct link com-
mand receiving system which permits Earth directed variations in the sequence in-
cluding imagery equivalent capabilities of 1/2 hr transmission per day.

2.4.2 DIRECT ENTRY WITH DEFLECTED RELAY SUPPORT MODULE

A sequence of events from launch to mission completion is shown by table 2,4-2.

This describes a mission as defined for a flyby Autonomous Capsule which incorporates
an integrated Support Module. This Support Module performs propulsions and support
functions for the landed Capsule during interplanetary cruise and serves as a relay
telementry link after Capsule impact. Fig. 2.4-2 a graphical presentation of the first
46 hr of landed operations.

The sterilization canister forward section is separated while the Booster Transtage
and attached Capsule are still in Earth parking orbit. The Transtage/Capsule next
orients and injects into a Mars flyby trajectory. The Spacecraft then separates from
the Transtage and orients to an Earth pointing attitude and spins up for stabilization.
Corrections are made as required to maintain the pointing attitude and spinning
throughout the 215 day interplanetary cruise., Midcourse corrections are also ner-
formed to assure that the Capsule is an impacting trajectory.
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The Zntry Vehicle separates from the Support Module 24 hr prior to entry. The Sup-
port Module then deflects to a flyby trajectory and orients to serve as a relay telem-
etry link for the entry vehicle. The latter continues on the impact trajectory and
continues spinning to retain stabilization,

Entry science data is collected and (a) transmitted real time to the flyby Support

Module and (b) stored with a 70 sec delay and transmitted interleaved with the real time

data to the Support Module which relays the data to Earth, Deceleration is accom-
plished by parachute, whose deployment is actuated by a Mach 2 sensor.

After impact and the Lander package comes to rest, camera, T/M, and meteorological

booms are deployed, Surface imaging and meteorology measurements are performed

immediately thereafter and transmitted real time by UHF telemetry to the flyby Support

Module for relay to Earth, Twenty min later imaging and UHF telemetry is discon- -
tinued. Meteorology readings are continued at 20 min intervals and data stored. Landed

science (life detection, soil composition, etc.) measurements commence 18 hr after

impact with data stored, Science activities are completed in 1 hr but subsequent life

detection growth readings are performed every 20 min with storage of data.

Twenty hr after impact, the S-band direct link telemetry and imaging systems are
turned on for a 1 hr period. Stored data and additional real time imaging data are
transmitted directly to Earth.

TABLE 2,4-2., D/E LANDER WITH DEFLECTED RELAY
SUPPORT MODULE, MISSION SEQUENCE OF EVENTS

A, Launch to Impact Time
1. Launch T
L
2. Achieve Parking Orbit TL +12 min -
3. Separate Biobarrier Canister Forward Section TL +30 min
4, Orient Booster Transtage for Interplanetary TL +40 min

Trajectory
5. Inject into Cruise Trajectory TL 450 min

6. Separate Autonomous Capsule from Canister TL +60 min
and Transtage

7. Orient Capsule to Earth Pointing Attitude TL +60, 1 min -



10,

11,

12,

13,

14.

15.

16.

17,

18,

19,

20,

21,

22,

23.

24,

25,

26,

21,

Initiate Spin Stabilization to Capsule

First Midcourse Maneuver (If Req'd) To Assure
Impact
Second Midcourse Maneuver (If Req'd) Trajectory

Mars Arrival

Start Capsule Final Diagnostic Checkout

Complete Diagnostic Checkout

Update Computer and Sequencer

Final Impact Trajectory Correction Made (If Req'd)
Turn on Lander Power and Diagnostic Data
Capsule Orients to Entry Attitude

Entry Vehicle Separates from Support Module
(Spin Stabilization Continues)

Support Module Deflected to a Flyby Trajectory
and Oriented to Serve as a Relay T/M Link

Turn Entry Vehicle Power and T/M to Standby Mode

Engineering Data T/M in 1000 bps Bursts for 60 Sec
Every Hr Until Entry

Turn on Entry Vehicle Power and Mass Spectrometer
Initiate Despin

Turn on UHF T/M and Entry Science

Entry

Mach 5 - Initiate Mass Spectrometer Water Vapor
and Temperature Sensor Readings

Mach 2 - Deploy Parachute

TL +60, 2 min
TL +30 days

TL +205 days
TL + 215 days
TO (Entry-48 hr)
TO +120 min

TO +17 hr

TO +20 hr

T1 (TO +21 hr)
T1 +5 min

+3 h
T2 (T1 3 hr)
T2 +2 min

T _ +4 min

T3 (T4 -15 min)
T, +.5 min

3

T, +14 mi
3 min

T, (T, +24. 0hr)

T +97 2k
4 sec

T4 +118 sec*
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28. Aeroshell Separation

29, Jettison Parachute

30.

Impact-Force Sensed and Stored

*Entry Times Predicated on MAX Atmosphere

B. Landed Operations

1.

10,

11,

12,

13.

14.

2-30

Diagnostic and Stored Entry Data Transmitted to Flyby
Support Module for Relay to Earth (Low Data Rate)

Lander Comes to Rest - Up Direction Sensed
Initiate Hatch Cover and Boom Deployments

Perform Surface Meteorology Measurements and Trans-

mit to Support Module for Relay to Earth (High Data Rate)

Turn Off T/M Systems

Repeat Meteorology Measurements at 20 Min Intervals
and Store Data

Initiate Surface Science Experiments with Data Storage
Complete Surface Science Experiments

Turn on Imaging and S-band Direct Link T/M Systems
Transmit Stored Data Direct to Earth

Repeat Surface Imaging and Meteorology Measurements
with Data Transmitted Real Time to Earth by S-band
Link

Turn off T/M and Imaging Systems

Repeat Meteorology and Life Detection Scattering
Reading at 20 Min Intervals with Data Storage

Turn on S-band T/M and Transmit Stored Data to
Earth

T4 +128 sec*

T4 +1216 sec*

+
T5(T4 1217 sec)

TG(TS +2 min)
T +0,1 min
6

T6 +0, 5 min

T  +20 mi
5 min

T (T +18 hr)
T7 +1 hr
TS(T5 +20 hr)
T8 +1 min

T8 +5 min

T _ +1hr

Ty (T, +24.6 hr)



15, Turn off T/M System T _ +15 min

9
16, Deploy Solar Array T9 +20 min
17. Continue Meteorology Measurements and Storage -
3 Times/Hr
18, Turn on S-band T/M and Transmit Stored Data to T10 (T9+24. 62 hr)
Earth
19, Turn off S-band T/M System T, . +15 min

10

20. Continue Meteorology Measurements and Storage -
at 1 Hr Intervals with Daily Transmission to Earth,
Command Receiver permits Earth Directed Variations
in Sequence including Imagery Equivalent Capabilities
of 1/2 Hr Transmission Per Day

T AR [0 W/ s e O 7 a5 4E
EVENT MINT 2 468 10 121416182022 ) b))
/4 7/
IMPACT AND
SETTLEMENT F

BOOM DEPLOYMENT |

ME TEOROLOGY 110 41 11t ALkl i
| MAGING N . -
EXTENDED SCIENCE [ ]

SOLAR ARRAY
DEPLOYMENT .

RELAY T/M I
DIRECT T/M _ .

Figure 2.4-2, Autonomous Flyby Capsule Landed Sequence of Events

2-31



Meteorological and life detection reading and storage continue for the next 24,62 hr,
The S-band telemetry link is then turned on for a 15 min period during which all
stored data is transmitted directly to Earth. Following shut down on the T/M system,
the solar panel array is deployed. Twenty min meteorological readings continue for
an additional 24, 62 hr period. The data from which is again transmitted directly to
Earth during a 15 min S-band T/M period.

The Capsule then switches to an extended life mode which is powered by solar panel
recharging of the battery. Meteorological measurements are performed at 1 hr in-
tervals with daily S-band transmissions to Earth. Lander includes a direct link
command receiving system which permits Earth directed variations in the sequence
including imagery equivalent capabilities of 1/2 hr transmission per day.
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3. SUPPORT MODULE DESIGN

3.1 REQUIREMENTS

The requirements on the Support Module for an Autonomous Capsule are dependent
upon the mission mode of utilization of the Support Module. This is graphically
illustrated in fig, 3.1-1,

The fundamental variable in the Support Module design is whether the Support Module
is called upon to perform the function of relaying Capsule entry data back to Earth
after separation from the Capsule. If not, the Support Module need only perform
certain cruise functions and can be jettisoned from the Autonomous Capsule prior to
entry to reduce entry weight.

If the Support Module is to perform the entry data relay function, the Flight Spacecraft
may, after the first midcourse correction, be placed on either an impact trajectory

(as in the direct link case) or a flyby trajectory (as in Mariner Mars '69). In the latter
case, the Capsule deflects itself onto the proper entry corridor after separation from
the Support Module, while the Support Module performs the relay function as it flies

by the planet, In the former case, after separation from the Capsule, the Support
Module may either deflect itself onto a flyby trajectory or perform a time-of-flight
adjustment to retard its arrival at the planet relative to the entering Capsule.

ENTRY DATA
RETURN

RELAY DIRECT

SPACECRAFT
APPROACH
TRAJECTORY

IMPACT IMPACT

SUPPORT
MODUL E
TRAJECTORY
IMPACT IMPACT
RELAY
TIMING STORED |
REAL STORED I nor
TIME !APPUCABLE
¢

Figure 3,1-1, Support Module Mission Modes



In the flyby relay mode of operation, the transmission of the entry data from the
Support Module to Earth may be either in real time or after storage of the entry data
aboard the Support Module. In the alternative where the Support Module follows the
Capsule on a trailing impact trajectory, it is unlikely that a time-of-flight adjustment
of sufficient magnitude to permit the stored mode of operation would be performed.

It can be seen therefore, that the mission mode of operation determines which functions

must be performed by the Support Module, and these functions in turn determine cer-

tain minimum subsystems which must be represented aboard the Support Module (see
table 3.1-1).

If the Support Module is to serve as a relay station, it must both receive entry data
from the Capsule and retransmit it to Earth, The former function suggests that a
relay antenna and receiver must be contained aboard the Support Module; the latter
requires at least the transmission portion of a radio subsystem. If the relay is other
than in real time, data storage capability must be provided aboard the Support Module.
To assure that the relay antenna points at the entering Capsule, and that the Earth
antenna looks back toward Earth, dictates that the separated Support Module must
possess some form of attitude control capability, Furthermore, some form of com-
puter or sequencer capability is required to program the foregoing relay sequence.
In addition, certain basic subsystems are required to support and integrate the relay
Support Module, e.g.,structure, cabling, temperature control, and power,.

Secondly, certain functions are required by the Flight Spacecraft during cruise
which are not required by the Capsule after separation. These subsystems should be
incorporated aboard the Support Module to reduce the entry weight of the Capsule.
Falling in this category are cruise separations and deployments, solar array power,
and the necessary propulsion for midcourse corrections and (if applicable) deflection
maneuvers or time-of-flight adjustments.

Finally, there are a few marginal functions which could be implemented aboard the
Flight Capsule and shared by the Support Module during Spacecraft cruise, These
functions would not, however, be available to the separated Support Module.
Subsystems falling in this category are telemetry, command, and the reception

portion of the radio subsystem. Excluding these functions from the separated Support
Module results in some degradation of mission flexibility. For example, incorporating
the radio (reception) and command subsystems fully within the I'light Capsule results
in complete loss of capabhility for Earth control of the separated Support Module.

Figure 3.1-2 is a simplified block diagram of the major subsystems of the relay
Support Module. Note that the marginal subsystems of radio (reception), command,
and telemetry have been included in the block diagram. Generally, the penalty for
their incorporation in terms of weight or power is small in comparison with the total
weight or power of the Support Module,



A significant question is the type of attitude control to be employed aboard the Flight

Spacecraft and the separated Support Module.

The two promising alternatives are

three-axis control (employed aboard the Mariner series Spacecraft) and spin sta-
bilization (as employed aboard the Pioneer series Spacecraft). Both alternatives

are discussed in more detail in the following Section.

TABLE 3.1-1. RELAY SUPPORT MODULE FUNCTIONS

STORAGE OF ENTRY DATA
(EXCEPT REAL TIME RELAY)

RETRANSMISSION TO EARTH

SEQUENCING OF RELAY EVENTS

SUPPORT FOR THE ABOVE

CAPSULE AND EARTH ANTENNA POINTING

RESULTING
BASIC FUNCTION SUBSYSTEM
MINIMUM RELAY FUNCTIONS
RECEPTION OF ENTRY DATA RELAY

DATA STORAGE

RADIO (TRANSMISSION)
ATTITUDE CONTROL
COMPUTER AND SEQUENCER
POWER (STORED)

CABLING

STRUCTURE
TEMPERATURE CONTROL

CRUISE FUNCTIONS NOT REQUIRED
BY SEPARATED CAPSULE

CRUISE POWER

MIDCOURSE AND TIME~-OF-FLIGHT
ADJUSTMENTS

CRUISE SEPARATIONSAND DEPLOYMENTS

PYROTECHNIC
MECHANICAL DEVICES

POWER (REGENERATIVE)

PROPULSION

MARGINAL FUNCTIONS

BACKUP RELAY SEQUENCING

STATUS MONITORING

RADIO (RECEPTION)
COMMAND

TELEMETRY
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3.2 ATTITUDE CONTROL

3.2.1 ALTERNATIVES CONSIDERED

There are three broad requirements for the Support Module Attitude Control Subsystem,
First, control of the Spacecraft attitude is required during the heliocentric cruise phase
to provide a satisfactory communications link to the Earth and efficient solar power
collection by the solar array. Second, reorientation of the Spacecraft attitude to any
arbitrary spatial attitude is required to point the fixed midcourse thruster for trajectory
corrections during the cruise phase. At planetary encounter, reorientation may be
required to meet requirements for Capsule deflection attitude, relay communications,
or Support Module time-of-flight adjustment. Finally, attitude hold during firing of the
propulsion system is required to control the direction of velocity change to the Space-
craft or Support Module, These requirements are unaffected by the mission mode of
operation of the Support Module,

To meet these requirements, both an active, threc-axis attitude control and a semi-
passive, spin stabilized attitude control system were considered. Both systems can
meet all the mission requirements. The three-axis system measures and corrects
attitude errors automatically by means of three closed control loops on hoard the Sup-
port Module. The spin system measures the attitude errors with on-board sensors
and transmits the data to the ground over the telemetry link; ground data processing
determines the attitude, and corrections are made by open-loop ground commands

to the Spacecraft propulsion system.

The active, three-axis attitude control subsystem (A/C) acquires and stabilizes the
Spacecraft to the Sun and the star Canopus. It then maintains the Spacecraft attitude
relative to these references during the heliocentric cruise and Mars encounter phases.
Upon receipt of commands from the Central Computer and Sequencer (CC&S), the sub-
system maneuvers the Spacccraft by sequential rotations about its axes to any arbitrary
spatial attitude, where velocity changes are performed by the propulsion system for
trajectory correction or Support Module/Capsule time-of-flight separation. During
engine firing, the A/C changes the thrust vector direction by controlling vanes in the
engine exhaust to maintain vehicle attitude and stability, At a signal from the CC&S

at the end of the maneuver sequence, the A/C reacquires the Sun and Canopus,

The spin stabilized attitude control subsystem establishes an inertial reference for
Spacecraft attitude by spining up the vehicle just after separation from the Launch
Vehicle so that its spin axis remains fixed in inertial space. Upon receipt of commands
from the CC&S, the subsystem reorients the spin axis to any arbitrary spatial attitude.
Reorientations are required for two reasons; (1) to keep the spin axis pointing to the
Earth during heliocentric cruise, and (2) to align the midcourse correction thruster to
the desired attitude prior to midcourse velocity corrections, During engine firing as
well as during heliocentric cruise, attitude is maintained by the dynamic stability of
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the spinning Spacecraft. Measurements of Spacecraft attitude are made on-board using
the Sun and star field as reference, but corrections to attitude are made through the
ground command link.

Estimates of power and weight for the two systems are given in table 3.2-1. The spin
system is lighter, less complex, and takes less power. It is semi-passive; in fact,
power can generally be turned off except when attitude measurement or correction is
required. No gyros or error processing electronics are required. The spin system uses
the midcourse thrusters to correct attitude errors rather than requiring a separate

cold gas system. During engine firing, the spinning Spacecraft dynamics maintains

the attitude so that a separate autopilot is not required. Spin techniques have been

flight proven on Pioneer, Explorer and Comsat Spacecraft, but in general, new hard-
ware must be developed for the Mars '73 mission.

On the other hand, the three-axis system is more automatic and does not require the
telemetry and ground command links to determine correct attitude. Maneuver attitude
verification is easier in this system. Although more complex itself, it significantly
reduces complexity in other subsystems. For example, it provides a stable platform
for communications antennas. Also, it if is Sun pointing,a minimum area of solar array
is required. All techniques have been flight proven on the Mariner Spacecraft, and

in general, the Mariner '69 hardware can be used with little or no change for the '73
mission,

3.2.2 THREE-AXIS CONTROL

A block diagram of the active, three-axis subsystem is shown in fig. 3,2-1,

During launch ascent, all parts of the subsystem are unpowered except the gyros. Fol-
lowing separation from the launch vehicle, power is applied to the rest of the sub-
system. Sun sensors provide position signals in pitch and yaw and the gyros provide rate
signals; the Canopus sensor output is not used. The initial rates are reduced to a low
value and the subsystem operates to acquire the Sun. Then, a Sun gate operates to
enable the Canopus sensor and to roll the vehicle about the Sunline until the sensor ac-
quires and locks onto the star Canopus. The system discriminates against stars other
than Canopus by brightness gate settings in the Canopus sensor acquisition logic. At
the completion of Sun and Canopus acquisition, the gyros are turned off. The system
switches to the cruise mode, in which the Sun sensors control pitch and yaw attitude
and the Canopus sensor controls roll during the heliocentric cruise period. The gyros
are off and control loop damping is obtained by the derived rate. The A/C is capable
of automatic reacquisition of Sun and Canopus reference if either is lost.

When a velocity correction maneuver is commanded, the optical sensor outputs are not
used. The gyros, operating in their position mode, establish an inertial reference.
The gyros are torqued in sequence to produce a constant Spacecraft turning rate about
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TABLE 3.2-1,

COMPARISON OF ATTITUDE CONTROL ALTERNATIVES

Three-axis

Spin Stabilized

Weight*

62 1b

15 1b

Power

6 watts - cruise

42 watts - maneuver

7 watts

the desired axis.

is initiated to supply the velocity correction.

*Three-axis weight includes a separate Ny cold gas system. The
propellant and tankage for the spin system are included in the propul-
sion system,

The time the gyros are torqued is controlled to yield the desired ro-
tation, The attitude is then controlled by position signals from the three single-axis
gyros. At the completion of the commanded turn sequence, the propulsion subsystem

The autopilot maintains the inertial

attitude of the Spacecraft by positioning jet vanes to control the thrust vector direction.
The gyros generate position error signals, which are processed by the autopilot elec-

tronics, to drive the vane actuators.

Upon completion of the velocity correction, the

CC&S commands the subsystem to reacquire the Sun and Canopus and return the cruise

mode,

The A/C can orient the Spacecraft to the Sun and Canopus from any initial orientation,
and with initial rates as high as 3 about each aixs.
in less than 30 min, followed by a Canopus search and lock on in less than 70 min

During acquisition, the initial rates are quickly reduced, and they

are limited to about 0,25 sec as the position error is reduced. Roll rate during Canopus
search is about 0. 1° sec.

additional time,

Orientation to the Sun takes place

€

During cruise operation, the limit cycle rate is about 0.2 x 10~ sec. The deadband

. =0 :
is about + 0. 25 for each axis.

The combined effects of all errors such as those due to

deadband, alignment, null shifts and drifts, noise, and other random errors is less
than 0. 5° per axis (3 0),

During command turns, the turning rate is about 0.2° sec. The turn magnitude is con-
trolled by allowing this rate to continue for a predetermined interval of time. The error
between the resulting orientation and the commanded orientation depends on the magni-
tude of the specific turns involved and on the total time interval, Specifically, the
cruise orientation error, gyro drift errors over the turning interval, gyro tate calibra-
tion, and capacitor leakage errors are the most significant. The resulting error for a
90° turn is 0.85 (30).
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An error analysis of the autopilot has not been made, nor have requirements been
established, The autopilot requires redesign due to changes in Spacecraft dynamics.
Errors in attitude hold during autopilot operation (i.e., while engine is firing) are
affected by Spacecraft center of mass offset and thrust misalignment. The allowable
error is a function of the velocity increment to be given the Spacecraft. With a thrust
misalignment angle of 0.3°, a CM angular offset uncertainty of 0.4° and an autopilot
gain of 5°, the steady state autopilot error is about 0. 55° (3¢). Transient errors
have not been evaluated.

3.2.3 SPIN STABILIZED

A block diagram of the spin stabilized subsystem is shown in fig. 3.2-2,

During launch ascent, all parts of the A/C are unpowered. At Spacecraft separation
from the Booster, power is applied, and the Spacecraft is spun up by the spin/de-spin
jets to maintain the separation attitude of the spin axis. Spinup may be accomplished
by Support Module/Capsule mounted spin/de-spinthrusters, or it may be done by the
launch vehicle before separation. Spin axis orientation is verified by a body mounted
Sun sensor and a star sensor. The Sun sensor determines the angle between the spin
axis and the Spacecraft/Sun line, The star sensor scans a portion of the celestial
sphere as the Spacecraft rotates and detects crossings of stars above a given bright-
ness. Sun and star sensor data is telemetered to ground where computer star
mapping techniques are used to establish the spin axis orientation. A reorientation
of the spin axis (as described in thefollowing) is then made to put the spin axis in the
ecliptic plane and to point it toward the Earth,

Upon receipt of commands from the CC&S, the subsystem reorients the Spacecraft

spin axis by pulsing of jets directed parallel to the spin axis. The time of pulsing is
referenced to the Sun crossing. The pulses operating over part of a revolution
generates a precession torque which realigns the spin axis to any arbitrary spatial
attitude. This reorientation points the midcourse thrusters in the direction necessary
to produce trajectory corrections by velocity change, When proper orientation is
achieved, continuous pulsing of the axial jets provides the necessary AV. During engine
firing, the dynamic stability of the spinning Spacecraft holds the Spacecraft attitude,

At the end of the engine thrusting, the Spacecraft is reoriented to its normal Earth-
pointing attitude.

The subsystem block diagram is shown in fig. 3.2-2. Sun pointing errors from the
Sun sensor and star crossings from the star sensor are applied to the A/C electronics
where buffer storage and conditioning of the data takes place. Sun error and star
crossing data are then telemetered to the ground for attitude determination and/or
verification,
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The A/C electronics also accepts spin-up and reorientation commands from the CC&S
to operate the appropriate thruster valves, Reorientation commands are time refer-
enced to Sun crossings so that jet pulsing occurs at the proper inertial position in the
spin cycle.

The passive damper enhances the natural damping of the Spacecraft to assure align-
ment of the axis of maximum moment of inertia with the spin momentum vector.

Spin-up of the Spacecraft after separation takes about 6 sec. The Sun and star
sensors on the spinning Spacecraft in conjunction with ground processing of the data
can measure the Spacecraft attitude to about 0.3°, The main pointing measurement
errors are due to misalignment and null shifts of the sensors. Solar pressure
torques are negligible but the Earth pointing error will vary slowly as the Earth/
Spacecraft line changes in direction during the cruise phase, This necessitates
periodic reorientations during the mission,

During engine firing, the error depends on the thrust vector misalignment and CM
offset of the Spacecraft, The spin rate must be high enough to withstand these distur-
bance torques, With a value of 10 rpm, a thrust of 10 1b, and a CM offset of 0.3 in.,
the orientation error is less than 0.5° during engine firing. With this spin rate, the
spin axis can be reoriented by pulsing the jets at an average rate of about 0.5° sec

so that a 90° maneuver can be executed in about 3 min of elapsed time.

3.2.4 SPIN AXIS ORIENTATION

Three choices of spin axis orientation were considered; (1) spin axis perpendicular to
the ecliptic plane, (2) spin axis parallel to the ecliptic plane and pointing to the Sun,
and (3) spin axis parallel to the ecliptic plane and pointing to the Earth, The com-
parison factors and a relative evaluation of them for each alternative is shown in
table 3,2-2, The Earth pointing alternative was chosen primarily because the high
gain antenna implementation is much simpler, There is a minor penalty in solar
array area, Another penalty is that periodic reorientations are required to remove
Earth pointing errors which occur because the Spacecraft-Earthline changes direction
while the spin axis remains fixed inertially.

A significant problem with Earth pointing is the loss of Sun pulse reference for jet
pulsing as the Earth-Spacecraft-Sun angle changes throughout the flight, The angle
decreases from about 45° to 5° and then increases to 40° as the mission progresses.
Fortunately, maneuvers are required early and late in the cruise phase when the angle
is nearer 45° and a clear Sun pulse can be obtained. The smaller angle and the asso-
ciated degraded Sun pulse occur in the middle of the mission when no maneuvers are
nominally planned.
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3.3 PROPULSION

3.3.1 REQUIREMENTS

The propulsion subsystem for the Support Module must be capable of performing the
maneuvers shown in table 3,3-1.

TABLE 3.3-1. MANEUVERS FOR THE PROPULSION SUBSYSTEM,
SUPPORT MODULE

Maneuve
Mode neuvers
Spin Stabilized Three-axis Stabilized

Impact 1. Midcourse Corrections Midcourse Corrections
Relay 2., Time-of-Flight Time-of-Flight
(Sterile) Separation Separation

3. Orientation
Flyby 1. Midcourse Corrections Midcourse Corrections
Relay 2. Orientation
(Non-sterile) 3. Spin-up
Deflected 1. Midcourse Corrections Midcourse Corrections
Flyby 2. Deflection Deflection
Relay 3. Orientation
(Sterile)
Autonomous 1. Midcourse Corrections 1. Midcourse Corrections
Direct 2, Orientation
(Sterile)

The midcourse correction maneuvers nominally require a AV of 50 meters/sec
(mps), and the flyby deflection and time-of-flight separation a AV of 60 mps. Spin-up
thrusters are not required on the sterile Support Modules, since the entire flight
Spacecraft is ejected from the sterilization canister prior to initial spin-up, thereby
allowing spin-up to be performed by the Capsule roll control thrusters.

The three-axis stabilized system utilizes as much Mariner hardware as possible;

accordingly, orientation and roll control are performed by a separate cold gas system,
as on Mariner,
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3.3.2 PROPULSION SUBSYSTEM FOR SPIN STABILIZED

The propulsion subsystem for the spin stabilized Support Module is comprised of a
pressurant storage assembly which uses helium gas at a nominal pressure of 3600
psi; a pressurant control assembly consisting of the necessary valving, filtration, and
regulation components; a propellant storage assembly for storage of anhydrous hyda-
zine in two spherical tanks with positive expulsion bladders; a propellant control
assembly with the necessary valves and filters; thrust chamber assemblies providing
5 lbs of thrust each; and the propulsion structure. TFour thrusters are required for
the sterile modules and six for the non-sterile, the additional two thrusters being
required for spin-up. A representative schematic diagram for both the non-sterile
and the sterile modes is presented in fig. 3.3-1. A weight breakdown is provided in
table 3.3-2.

A monopropellant system was selected for this mission on the basis of a cursory
trade study and the experience gained on prior planetary studies performed by GE-RS.
Monopropellants were selected over solid propellants because of the requirement for
a restart capability and a variable impulse for multiple midcourse corrections.
Monopropellants were chosen over bipropellants because past studies have proven that
at low total impulse requirements, such as for this mission, monopropellant engines
are lighter. Additionally, they are inherently more reliable due to fewer components.

A thrust level of 5 1b was selected as a compromise to the several mission maneuver
requirements shown in the following table. Such 5 lb thrusters are known to have
been flight proven on the ATS program and a classified DOD Program,

Maneuver No. of Total Approximate Total Hot
Thrusters Thrust Firing Time*
Midcourse 2 10 Ibf 1000 sec
Time-of-Flight 2 10 1bf 330 sec
Orientation 2 10 1bf 10 sec
Spin-up 2 10 1bf 6 sec

*This is only the on-time of the thruster
Typical performance for a 5 1b thruster is:
1) Steady state ISp = 227 sec

2) Pulsing ISp (0.100 sec pulses) = 216 sec
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3) Response
a) Electrical signal to 90 percent Pc (cold) = 0,032 sec
b) Electrical signal to 90 percent PC (hot) = 0.025 sec
4) Total pulse capability: In excess of 200,000
The weight breakdown presented in table 3, 3-2 assumes the pressurant and propellant
are asceptically loaded for the sterile mode, The spin stabilized system was analyzed
with respect to heat sterilizing after loading pressurant and propellant, This results
in a weight increase of 3 pounds, which is comparable to the accuracy of these

weight estimates,

3.3.3 PROPULSION SUBSYSTEM FOR THREE-AXIS STABILIZED

The propulsion subsystem for the three-axis stabilized Support Module is the same as
the Mariner '69 propulsion system except for the amount of propellant and the structural
arrangement, The mission described herein requires approximately 44 1bs of hydra-
zine propellant, an increase of 22,5 lb- over that required for Mariner '69. The
Mariner '69 propulsion subsystem was designed by JPL as a completely modular unit;
however, due to the requirements of the support module, structural and mounting pro-
visions will change,

The Mariner '69 engine is schematically shown in fig. 3.3-2. High pressure nitrogen
is regulated down to 308 psia feeding propellant from the propellant storage tank to the
rocket engine, Propellant and pressurant on/off flow control is accomplished with
multiple start and stop explosive valves, The propellant tank contains a butyl rubber
bladder for positive expulsion. The thrust chamber assembly contains Shell 405
catalyst for spontaneous ignition and sustained decomposition of the hydrazine, Four
jet vanes included in the thrust vector control assembly are located at the exit plane
of the nozzle and are used to provide roll and yaw control during the engine burn
sequence,

A weight breakdown of the propulsion subsystem, as modified for the Support Module,
is presented in table 3,3-2,
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3.4 CONFIGURATION

The Autonomous Capsule Support Module for this study was considered to be a com-
pletely new structure; i.e., no use made of any existing Mariner structrual hardware,

The method of support of the Flight Spacecraft within the launch shroud can be tabu-
lated into five basic types (see figure 3.4-1), This study considered unsterilized
Support Modules. The arguments and conclusion are equally applicable to sterilized
Support Modules which are contained inside the Canister,

Type 1. This shows the Lander supported nose down and the aft portion of the steril-
ization canister as a load-carrying structure, carrying the Capsule loads by
beam bending direct to the launch vehicle flight shroud. Support Module loads
are also added to and taken through the reinforced portion of this sterilization
canister,

Type 2. This is similar to Type 1, except for the addition of a separate Spacecraft
support adapter. This concept has the advantage of being able to jettison the
complete "hammerhead' flight shroud. However, the launch weight is higher
due to the addition of the separate support adapter.

Type 3. This shows the Lander supported nose up with all of the Capsule loads travel-
ling through the Support Module to a separate support adapter, creating a
very simple and straightforward load path.

Type 4. This is similar to Type 3, except that the Spacecraft loads are beamed out to
the launch vehicle flight shroud via the fixed solar array panels and the truss
section.

Type 5. This shows an integral sterilization canister to flight shroud support concept.
The Spacecraft loads here are carried directly to the flight shroud but via the
integrated load-carrying sterilization canister,

A cursory look at the weight advantages of these various types of support concepts
showed Type 3 to be slightly more advantageous. However, due to the stackup nature
of this concept (adapter, Support Module, Capsule), the load applied at the Transtage
interface is higher. Types 1, 4 and 5 do not seem to be very desirable methods due
to their added complexity with the launch vehicle shroud and due to the added weight
that must be boosted onto the heliocentric transfer orbit. Type 5 also requires a
dorsal fairing across the Spacecraft/launch vehicle interface joint to carry the umbili-
cal harnesses between the Lander and the Support Module, and also from the Flight
Spacecraft and launch vehicle. Configuration concepts during this study were based
upon the Type 3 configuration,
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3.4.1 THREE-AXIS STABILIZED, NON-STERILE, SUPPORT MODULE

The Spacecraft shown in figure 3.4-2 consists of three basic modules: the Spacecraft
Adapter Module, Support Module and the Flight Capsule Module,

The Spacecraft Adapter Module is a simple semi-monocoque conical structure, ex-
tending from the Titan III interface up to the Spacecraft separation plane. Its length
is dependent on final sizing of the antennas which extend down into the inside of the
conical adapter.

The Spacecraft Support Module extends from the Spacecraft separation plane up to the
Flight Capsule interface for normal manufacturing and field installation. However,
during flyby the Support Module also contains the aft sterilization canister and the
internal Capsule adapter section, The Support Module consists of a basic cylindrical
section which serves as a load-carrying structure for the flight Capsule and a support
structure to shich the electronic equipment are attached, Mariner type bays can be
designed into this section so that existing Mariner equipment can be used. The bulk-
head between the Support Module and adapter carries solar cells, attitude control
nozzles, antennas and the midcourse engine assembly.

3.4.2 SPIN STABILIZED, NON-STERILE, SUPPORT MODULE

Figure 3,4-3 depicts the vehicle in the launch orientation. The Spacecraft is an Earth-
oriented, spin-stabilized vehicle. High and low gain antennas are located on the solar
cell side of the vehicle, pointing directly to Earth along the roll axis. The solar array
area is approximately 40 percent larger than for the three-axis stabilized vehicle due
to off-Sun pointing up to approximately plus or minus 40°,

The Support Module is basically the same as described in Section 3.4.1, except that
the bulkhead between the cylindrical section and the spacecraft adapter carries the
attitude control, maneuver, and spin control nozzles on the extremities of the panel.
The high and low gain antennas are fixed, pointing along the roll axis. The relay
antenna is stowed inside of the sterilization canister and deployed after separation
of the Lander from the Support Module.

3.4.3 SPIN-STABILIZED STERILE SUPPORT MODULE

This configuration consists of two basic modules: the Support Module and the Lander
(separated Capsule) and is shown in figure 3.4-4, These two basic modules are en-
cased in the sterilization canister and bolted directly the Titan Transtage interface.
After the space vehicle has been boosted into the heliocentric transfer orbit, the for-
ward portion of the canister is separated, and then the Spacecraft is separated. The
aft canister and integral adapter remain behind with the Transtage booster section,
The Spacecraft, after achieving separation, is spun up and oriented with roll axis to
Earth,
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The Spacecraft shown in figure 3.4-4 is spin stabilized; however a three-axis stabilized
vehicle could also be packaged within a sterilization canister similar to that shown.

The basic structural build-up of the sterile Support Module is as described for the
non-sterile vehicle, except that this structure and the electronic components must

all be subjected to the sterilization cycle.

3.4.4 STERILE SUPPORT MODULE FOR TRULY AUTONOMOUS

Figure 3.4-5 represents the case where all communication is on a direct link to Earth
during the entry phase. Two basic modules are encased within the sterilization canis-
ter similar to that configuration described in Section 3.4.3. No relay or high gain
antennas are required on the Support Modules, No de-orbit engine is required on the
Lander. This allows for a very flat and compact configuration,
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3.5 SUMMARY OF SUPPORT MODULE

Table 3.5-1 is a summary of the Support Module hardware alternatives by subsystem.
It is clear that all of the Support Modules discussed in the preceding section will re-
quire essentially new structure, cabling, and mechanical devices. Likewise, for
those Support Modules which perform a relay function, the UHF relay subsytem is
essentially a new design,

For the remaining subsystems, however, existing space hardware may fulfill the sub-
system requirements fully or in part. For example, it should be possible to adapt the
Mariner Mars '71 louvers to the requirements of the '73 Support Module. Likewise,
the MM'71 pyro controllers are probably suitable for use in '73., The MM'71 Central
Computer and Sequencer and Flight Command Subsystem are probably more than ade-
quate to fulfill the '73 sequencing and command requirements. The same applies to
the '71 Flight Telemetry Subsystem, except that certain modifications are required to
multiplex Capsule telemetry data with Support Module telemetry data and to accommo-
date the mission peculiar data rates in '73. The MM '69 digital tape recorder (DTR)
has a storage capacity of 2.3 x 107 bits, which is ample for storage of Capsule entry
and post-impact imaging data. It is likely, however, that certain speed change modifi-
cations would be required for the '73 system. Sterilizability of this recorder is sus-
pect and it has not been included on Support Modules which must be sterilized.

For the three-axis stabilized Support Modules, the MM '71 radio electronics generally
fulfill the '73 mission requirements; however, mission peculiar high gain, low gain,
and maneuver antennas are required. In the spin-stabilized case, it may be necessary
to incorporate a higher power amplifier than the 20-watt output of the MM '69/'71 TWT.
This results from the requirement for Earth verification of Spacecraft attitude at any
arbitrary midcourse maneuver attitude. After achieving the desired midcourse cor-
rection attitude, the three-axis stabilized Spacecraft may be rolled about its thrust
axis until the maneuver antenna illuminates the Earth, thereby establishing downlink
communications. This approach is, of course, not applicable to a spinning Spacecraft
which implies that the pattern of the spin-stabilized maneuver antenna must nominally
be spherical to account for any arbitrary maneuver attitude. To offset the reduced
gain associated with such a pattern, it is necessary to increase the power amplifier
output in the maneuver mode to around 50 watts, which is beyond the capability of
existing planetary or cislunar hardware,

For both types of stabilization, existing thrust chamber assemblies may be employed.
It is generally necessary, however, to design new tanks, lines, valves, and propulsion
support structure,

As discussed in Section 3.2, much of the MM'69 Attitude Control Subsystem is appli-

cable to the three-axis stabilized Support Module. Although the spin-stabilized Atti-
tude Control Subsystem is simpler than its three-axis counterpart, it is probable that
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TABLE 3.5-1. SUPPORT MODULE HARDWARE

"OFF-THE - SHELF"

SUBSYSTEM HARDWARE NEW HARDWARE
STRUCTURE ENTIRE
CABLING ENTIRE
MECHANICAL ENTIRE
DEVICES
RELAY ENTIRE
TEMPERATURE MM'71 LOUVERS REMAINDER
CONTROL
PYROTECHNICS MM'71 PYRO CONTROLLERS SQUIBS & RELEASE
DEVICES
COMPUTER & MM'71
SEQUENCER
COMMAND MM'71
TELEMETRY MM'71 WITH SLIGHT MODIFICA-
TION
DATA MM'69 DTR
STORAGE MODIFIED
3 - AXIS SPIN 3-AXIS SPIN
RADIO MM'71 EXCEPT MM'71 RE- ANTENNAS | ANTENNAS
FOR ANTENNAS CEIVER & & POWER
EXCITERS AMPLIFER
PROPULSION MM'69 THRUST ATS TANKS REMAINDER
CHAMBER ASSY THRUSTER
ATTITUDE MM'69 WITH SUN REMAINDER
CONTROL MODIFIED SENSORS
AUTOPILOT
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any existing hardare would have to be modified for the parameters of a planetary
mission.

The Support Module system power demand is summarized by mission phase and sub-
system in tahle 3.5-2. The wattages tabulated thereon have heen converted to equiva-
lent dc watts at the solar array, The first group of subsystems are those of which
the power demand is relatively independent of the type of Support Module stabilization.
The Attitude Control and Radio Subsystems are, however, dependent in their power
demand on the type of Support Module stabilization. For example, the threc-axis
Attitude Control Subsystem required gyro and autopilot power when in the maneuver
phase. The spin stabilized Radio Subsystem requires raw dc for the 50-watt mode

of the power amplifier in the maneuver phase.

In either case of stabilization, the solar array is sized hy a demand of approximately
227 watts dc during the store and relay phase of the Support Module mission. This
converts into approximately 50 ft2 of solar array for the three-axis stabilized support
module, and 72 ft2 of solar array for the spin-stabilized Support Module. The latter
results from the fact that the Sun is approximately 45° off the Earth-pointing spin axis
at encounter,

During maneuvers, approximately 264 and 396 watts of power are required by the three-
axis stabilized and spin-stabilized Support Modules, respectively. Assuming that the
Mariner '71 power system hardware is employed for the '73 Support Module, the former
demand is well within the 1200 watt-hr capacity of the Mariner AgZn battery. The

396 watt demand of the spin-stabilized Support Module is also well within the Mariner
battery capacity, but the times that the spin-stahilized Support Module could remain

off the Sun would be reduced by about one-third, A singular advantage of the spin-
stabilized approach is that 400 Hz power distribution may be eliminated, since there
are no Mariner gyros to be powered,

Finally, table 3.5-3 is a summary tabulation of the spin and three-axis stabilized Sup-
port Module weights by subsystem for the various mission modes of operation. The
weights tabulated for the flyby relay cases are for that alternative where the Flight
Spacecraft approaches the planet on flyby trajectory; for the alternative of a deflected
flyby, a slight increase must be made in the Propulsion listing. The right-hand
column of the figure lists the corresponding weights for MM '69 stripped of all science
and science related equipment.

From table 3,5-3, it can be seen that the weight of a spin stahilized, relay Support
Module is about fifty 1b less than that of its corresponding three-axis stabilized
counterpart, Furthermore, the weight of the three-axis stabilized, relay Support
Module is compariable to a stripped Mariner '69, Finally, the weight of a Support
Module for a direct link mission is some 130 1b less than for the relay mission.

This latter savings must be taken in the proper perspective, in that the weight of the
Capsule must be increased to accommodate those mission functions no longer performed
by the Support Module,
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TABLE 3.5-

2. POWER SYSTEM SUMMARY

POWER DEMAND (WATTS DC)

SUBSYSTEM

CRUISE | MANEUVERS | STORE & RELAY | REAL TIME RELAY
COMMAND 4 4 4 4
TELEMETRY 21 21 21 21
DATA STORAGE 38
RELAY 1 1
COMPUTER & SEQ. 27 27 27 27
POWER | 5 5 5 5
TEMP. CONTROL 20 20 20 20
PYROS 1 1 1 1
FLIGHT CAPSULE 22 22
SUBTOTAL 100 100 117 78

3-AXIS STABILIZATION

ATTITUDE CONTROL 5 59 5 5
RADIO 105 105 105 105
TOTAL 210 264 7 188

e MM '71 POWER SYSTEM

050 FT> SOLAR ARRAY

SPIN STABILIZATION
ATTITUDE CONTROL 5 5 5 5
RADIO 105 291 105 105
TOTAL 205 396 7 201 //Z// 188
e
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TABLE 3.5-3.

COMPARATIVE SUPPORT MODULE WEIGHTS

SPIN STABILIZED

THREE-AXIS STABILIZED

SUBSYSTEM NO Sterile Sterile MM

RELAY 5’5113;- Flyby |FLYBY Flyby |FLYBY ! 69

AU- Real |STORE | NO |IMPACT | pea] |STORE

TONO- |'MPACT | jpe | & RELAY | RELAY | ime | &

mous | RELAY [ pojay |RELAY Relay [RELAY
RADIO 45 56 56 56 49 60 60 60 56
COMMAND -- 8 8 8 -- 8 8 8 5
TELEMETRY 9 22 22 22 9 22 22 22 20
DATA STORAGE -- -- -- 17 -- - _ 34 19°
RELAY -- 3 3 3 -- 5 5 5 --
ATTITUDE CONTROL{| 15 15 15 15 62 62 62 652 62
POWER 110 110 110 110 101 101 101 | 101 (121
COMPUTER & SEQ. -- 24 24 21 - 24 24 24 24
PROPULSION 77 95 95 77 71 90 90 71 A7
PYROTECHNICS 10 10 10 10 -- 10 10 10 1
MECH. DEVICES 14 19 19 19 10 10 10 19 17+
TEMP. CONTROL 16 23 23 23 18 26 26 26 29
CABLING 29 41 41 41 1 57.9 57.9 | 57.9 | 67
STRUCTURE 193 213 213 213 193 213 213 | 213|154
TOTAL 518 639 639 638 554 689 689 | 704 |ou7

* LESS ANALOG RECORDER
**LESS SCAN PLATFORNM
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4, FLIGHT CAPSULE DESIGN DESCRIPTION

4,1 DESIGN SUMMARY

Two Spacecraft design approaches were developed in this study of an Autonomous Cap-
sule, Mars mission concept. In both Spacecraft designs the Entry Vehicle and the
Support Module are sterilized systems encapsulated in a canister for the launch,

The Titan injects the Spacecraft on a flyby trajectory to preclude accidental impact of
Mars by the unsterilized portions of the Autonomous Capsule and the Transtage, After
separation, the spacecraft (Entry Vehicle and Support Module) maneuvers to a Mars
inpact trajectory,

The Spacecraft is spin stabilized during cruise with the Spacecraft spin axis pointing

to Earth and the Support Module on the Sun side of the Spacecraft, A fixed antenna is
used for the communication link to Earth and the solar arrays are sized to accommodate
the angle between the spin axis and the Spacecraft center line to the Sun.

In this autonomous mission design, the forward half of the canister is jettisoned be-
forethe Transtage leaves the Earth parking orbit, The adapter and aft canister remain
with the transtage when the Spacecraft is separated for the interplanetary cruise. The
basic difference in the Autonomous Capsule designs is the way that the entry science
data is transmitted to Earth, In the first Capsule design, termed "Truly" Autonomous,
the Support Module is separated from the Flight Capsule about 24 hr from entry and

is no longer a part of the Mars mission sequence, The Entry Vehicle performs the en-
try science measurements and transmits the data direct in real time to Earth DSIF sta-
tion, For this direct to Earth Transmission link it is necessary that the Earth be in
view of the Capsule during entry and landing and therefore a southern latitude landing
site was required consistent with the appropriate mission parameters of launch and
arrival dates, launch energy and the declination of the launch asymptote., The Sun,
however, is in the northern Mars hemisphere and therefore the solar panels required
for the surface operations in the southern latitude are considerably larger than the
power panel required for operations in the north (40 ft2 of array compared to 25 ft“) .
The Support Module provides the electric power, the communication link, the attitude
control, navigation, and midcourse correction propulsion required up to Entry Vehicle
separation for planet entry,
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4,2 TRULY AUTONOMOUS CAPSULE

The design approach, composition and the launch configuration of the Autonomous Cap-
sule design is shown on fig, 4.2-1. The load path in launch and ascent is shown pas-
sing from the Transtage to the shell structure adapter (external to the Canister), and
by an internal structure to the 8§ ft diameter Support Module body. The weight of this
combined external and internal adapter structure is 149 1b, The Support Module is
connected at a torque box closure of the Flight Capsule hase diameter. With a steri-
lization canister outside diameter of 162 in., it is estimated that the launch vehicle
flight fairing will be 192 in, and bulbous with respect to the 10 ft diameter Transtage
of the Titan.

For a direct entry ranging in path angle from 16° to 329, at a nominal velocity of

20, 800 ft/sec and a hallistic parameter (%Lx)limit of 8 1b/ft? the entry system aero-
shell selected is a blunt, high drag sphere’cone. The nose to base radius ratio of the
aeroshell is 0. 5, the half cone is 60° and the base diameter is 12,7 ft.

4,2.1 AEROSHELL STRUCTURE

Shell bending was determined to be the critical structural loading and is induced under
the inertial loading of the shell interior by the Lander system and by the exterior
pressure loading of the shell in ballistic flight, Since bending is critical, aluminum
honeycomb construction is competitive with the lighter materials (berylium, titanium,
magnesium), is lighter than stainless steel and is easiest of the candidate materials to
fabricate. Accordingly, the shell selected is a 1 in, aluminum core with HT 424 bonded
face sheets.

4,2.2 HEAT SHIELD

The heat shield selected is an ablative design with an elastomeric material that is soft~
bonded to the aeroshell structure. The material formulation typical for this entry ap-
plication is GE ESM 1004 AP (35 1b/ft3) bonded to the shell with GE RTV 560, The
shicld is prepared by bonding finish size shield segments with the joints scarfed,
placed at the mid point of the tiles in front and in back and with the longitudinal joints
at an angle to elements of the cone to prevent torque generation in flight. The nose
cap is removable for access to the Lander within the aeroshell, The cap contains a
berylium disc in which taps are made for four pressure and one temperature reading
and the atmospheric sampling of the mass spectrometer., The berylium disc protects
the measurements taken during centry from ablative products.
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4,2,3 ENTRY SCIENCE TABULATION
1 mass spectrometer for atmospheric composition measurements
4 pressure sensors for stagnation region pressure
1 temperature sensor for stagnation region temperature
1 base pressure and 1 temperature measurement
1 triaxial accelerometer for deceleration history

1 duct to mass spectrometer for water vapor reading.
4,2,4 LANDED SYSTEM

The Lander of the Autonomous Flight Capsule is equipped to perform surface science
operations that include taking surface pictures with two combined low (T%o IFOV) and
high (—03- IFOV) resolution facsimile cameras. The science measurements are

made with a combined gas chromatograph and mass spectrometer, a Wolf Trap type
life detection device, pressure and temperature sensors,and a soil sampler. All the
entry science instruments, except the pressure and temperature sensors for the stag-
nation region measurements, are also contained in the landed system. All of the equip-
ment for the surface operations is mounted within a cylindrical, open frame structure.
The deployed equipment (two camera-boom assemblies, the high gain S-band antenna
and the four solar panel units) are stowed in and deployed from within the main diag-
onal section of the cylinder. The other science instruments are positioned in a diag-
onal zonc at a right angle to the deployables bay. The operations equipment, the tele-
metry, communication, sequencing and power equipment are positioned m the quadrants
formcd by two diagonal bays with a net packaging density of about 30 lb/ft The 129
lb/ft battery when positioned in its bay has a net density of about 69 lb/f’t3

The cylinder rim is stiffened by a D-section torus that is pre-bonded to the interior of

the phenolic glass crush-up material of the impact attenuation structure. The cylinder

is joined to the rim and crush-up structure after tests and checkout of the science and
operations equipment have been completed. The honeycomb structure of phenolic glass
crush-up material has been designed for impacting slopes up to 20° with 5 in. rocks,

at speeds of 110 ft/sec horizontal and 100 ft/sec vertical and with a possible 40° maxi-
mum sway on the parachute. For these impact conditions, and a limit deceleration of
1000-g, with possible secondary impact of 100 ft/sec, the crush-up material surround-
ing the equipment cylinder consists of 9.5 in. for the initial impact side and 7.5 in. on the
rebound side of the Lander. The equipment is designed for a 90-day surface operation.
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Surface telecommunication includes a 20 watt transmitter, and a 24 dB, high gain an-
tenna and a low gain, back up antenna for the S-band communication link to Earth.
The entry data is transmitted directly on four antennas using four 100 watt trans-
mitters. The general arrangement and packaging details are given on figs. 4. 2-2 and
4, 2-3,

4,2.5 SURFACE SCIENCE INSTRUMENTS

2 dual resolution facsimile cameras Hi resolution Z%(_) IFOV

. 1o
Lo resolution = —'—100 IFOV

1 gas chromatograph and mass spectrometer for large particle detection and
atmospheric sampling

1 life detection experiment - Wolf Trap

1 soil sampler -
2 ambient temperature sensors

2 surface pressure sensors

2 clinometers - Lander orientation measurement,
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4,3 DIRECT ENTRY LANDER WITH DEFLECTED RELAY SUPPORT MODULE

In this Spacecraft design concept (fig. 4.3-1), the Support Module is separated from
the Entry Vehicle and is deflected from the impact trajectory to a flyby trajectory.
The module then serves the Entry Vehicle as a relay link for the entry data collected
and for low bit surface science experiments conducted before the flyby is over the
Lander horizon, (Imaging from surface is not possible because the sterilization re-
quirement precludes using a tape recorder for data storage*.) As in the Truly
Autonomous concept, both the Support Module and the Entry Vehicle are sterilized,
the forward canister is removed before leaving the Earth orbit and the Spacecraft
separated from the Titan Transtage after injection into a flyby trajectory. The spin-
stabilize Spacecraft is then maneuvered to an impact trajectory, The Spacecraft axis
is pointed to Earth for the communication link.

The Lander system (fig. 4.3-2) contains the same entry (13 1b) and surface science
equipment (36 1b) as the Autonomous design, but weighs considerably less because the
direct to Earth entry transmission system has been deleted and only 25 ft2 of solar
array is required compared to 40 ft2. In this mission concept, the landing site is in
the northern hemisphere because Earth visibility at landing is not required since the
Support Module is available to relay entry and landing data to Earth. With the Sun in
the northern hemisphere, the solar panels required of this Lander are smaller, A
further weight reduction is available because of the lower weight attenuation material
and structure required by the lighter Lander system.

The lighter Lander permits an 11. 4 ft diameter aeroshell as compared to the 12,7 {t
diameter required of the Autonomous Capsule.

The design approach to the entry system is the same as described for the Autonomous
with the exception of a smaller base diameter aeroshell and smaller encapsulating
canister (158.5 in. outside diameter compared to 162 in. for the Autonomous). The
entry and landing conditions were the same.....

e Entry path angle 25° nominal -9°, +7°

e Entry velocity 20, 800 ft/sec

® Mars model atmosphere VM-1, VM-10

e Touchdown winds 110 ft/sec, 200 slopes, 5 in, rocks
The Lander design is given on fig. 4.3-2 and is identical in the approach to packaging
(fig. 4.2-3) the science and the operations equipment, deploying the high gain S-band

antenna, fig. 4.3-3, the four solar panels, fig. 4.3-4 and the two facsimile cameras,
fig. 4.3-5.

*Small quantity (below 107 minimum) could be relayed real time.
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4.4 LANDER EQUIPMENT DEPLOYMENT

In the landed position, either surface of the vehicle may be uppermost, so provision
has been made for the deployment of instruments and equipment from either surface
of the flat pack container. However, to avoid unnecessary duplication of instruments,
the actuating mechanisms have been designed for two-way operation. A g-sensing
device will determine the direction of deployment.

Instruments deployed from the flat pack container of the Autonomous Capsule are the
following: two cameras, one antenna, two temperature transducers, a wind velocity
instrument, and a soil sampler. Except for the soil sampler, all of these instruments
arc deployed from the central bay of the flat pack container,

4,4,1 SOLAR PANEL ARRANGEMENT, STOWED CONFIGURATION, AND
DEPLOYMENT SEQUENCE

The Lander solar panel assembly is sketched in fig. 4.4-1, which shows the panel as-
sembly stowed in the Lander and also deployed into its fully extended position. The
panel assembly consists of four sets of double aluminum honeycomb sandwich panels,
which are stowed in a vertical position in separate compartments along the sides of
the central bay of the Lander, which also houses deployable instrument booms. Prior
to removal, the covers on the top and bottom surfaces of the Lander provide continuous
structural support along the edges of the panels, thus minimizing inertia loads im-
posed on the pins and mechanisms used during panel deployment. In addition, side-
ways precompression contributes to reduction of support loads and increases the
natural frequency of the stowed array. The packaging arrangement retains the feature
of deployment through either surface of the Lander.

As indicated in fig, 4.4-1, the panels, when deployed, clear the crushable fiberglass
honeycomb impact attenuator and do not interfere with the central space required for
the instrament booms. Each set of panels is independently actuated, so that if damage
to the Lander prevents one set from deploying, it will be possible to deploy the others.

The deployment sequence is illustrated in fig. 4.4-2. Fig. 4.4-2a shows two sets of
double panels side by side along one side of the storage bay. At each end of each set
of panels is a pancl support arm attached to the panels and pinned to the Lander, On
the front set, the near arm is pinned at the bottom and the far arm at the top, the re-
verse arrangement being used on the rear set of panels. This scheme allows deploy-
ment through either surface of the Lander. Deployment is initiated on command from
Earth or by stored command. The pin not required for motion is automatically discon-
nected by cover removal, and each set of double panels automatically swings in its
plane, as indicated in fig. 4.4-2b, actuated by a coiled torsion spring. The unpinned
support arm remains with the panels., When the panels have rotated through an angle
of 134°, a set of levers comes into operation to move the double panels to a horizontal
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position while the torsion spring continues to move the support arm through another
460 (sce fig. 4.4-2c). This combination of motions is required to prevent the panels
from colliding with the fiberglass honeycomb impact attenuator (see fig. 4.4-1), When
the support arm has moved through 180°, a latch connecting the two panels is released
which, in turn, releases holding springs. This causes the upper panel to slide relative
to the lower, as indicated in fig. 4.4-2d, after which a latch prevents return motion.
In its final position, the double panel is supported at one corner on the panel support
arm.

4.2.1.1 Design of Mechanisms

The solar panel assemblies stowed on each side of the Lander central bay are supported
in such a manner that panel inertia loads are not transmitted to the mechanisms.

Hence, the design of the mechanisms is based on the loads required to erect the as-
sembly and support it in the fully extended position, and the inertia loads of the mech-
anisms themselves. The total mechanism may be divided into the parts which per-
form the following steps of erection and deployment.

1. Support release
2. Support arm rotation
3. Panel rotation
4, Panel extension,
4,4,1.1.1 Support Release Mechanism

Before the panel assembly can be deployed through the upper surface of the Lander by
rotation about the upper panel support, the support at the diagonally opposite corner
must be released. The proposed design for accomplishing release is shown in
fig. 4.4-3, Detail C, Flats machined into the ends of the support spindle fit: into a
movable bearing, which is held inside a bearing block. For the condition shown in

the figure, the spindle would move out of the movable bearing if the panel rotates
above the diagonally opposite corner. This rotation is prevented by the Lander cover.
which presses down on the upper edge of the panel. Once the cover is removed, how-
ever, such rotation will occur, and the lower spindle will clear the block, as described
above. The spindle at the axis of rotation cannot clear its block, however, since even
a slight rotation will lock the spindle and the movable bearing inside the block. A
desirable feature of this design is that it does not require the removal of pins to re-
lease the corner of the panel,
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4,4,1.1.2 Support Arm Erection

Rotation of the panel support arm through a total angle of 180° from its stowed posi-
tion is accomplished by mcans of a torsion spring mounted on the spindle at the cor-
ner of the panel. The energy stored in the spring must be sufficient, not only to rotate
the support arm, but also to rotate the double panels. In order to avoid creep caused
by the long times involved in the Mars mission, the spring must be designed for re-
duced stresses.

When the support arm reaches the end of its rotation, a latch engages the arm, pre-
venting any additional motion, Once latching has heen accomplished, any subsequent
loads applied to the panel assembly are reacted by the lutch and not the torsion spring.

4.4.1.1.3 Rotation of Panel Assembly About Support Arm

After the support arm has rotated through an angle of 134° (scc fig. 4. 4-3), the panels
start to rotate relative to the arm so that, by the time the arm has rotated through an
additional 46°, the panels are at 90° to the initial deployment plane, This combination
of motions is required to cnable the panels to clear the impact attenuator surrounding
the Lander. The 900 rotation of the panels is accomplished by means of a tension link
to a panel rotation lever arm on the support arm main pivot. During the first 1340 ro-
tation of the support arm, this system moves with the panels as « rigid body, but at
1349, the rigid-body motion is stopped by a detent, and rotation occurs.

4,4,1.1.4 Panel Extension

The last step in the panel deployment is the sliding of the upper over the lower panel

to bring the array to its fully extended position. One possible scheme is a pantograph
arrangement similar to that used in other solar array designs. This scheme would be
preferable if the array consisted of more than two panels. Since only two panels are
involved, an alternate is plannced, as shown in Sections A-A and B-B of fig. 4.4-3. The
two panels are latched together in the stowed position, During the last stage of the
panel rotation, a lever on the rotation mechanism trips a latch, and four negator ex-
tension springs are released, forcing the panels to slide rclative to each other. Motion
takes place on nylon rollers treated with molybdenumdisulfide lubricant moving inside
C-shaped tracks fahricated along the edges of the panels. The roller shafts are sup-
ported from an aluminum alloy slide bar.

4,4.2 FEARTH POINTING ANTIENNA DEPLOYMENT AND CONTROL
After the Lander has scttled to its rest position on Mars, @ high gain antenna will be
crected from its stowed position within the Lander. The antenna direction will be es-

tablished such that its fixed position will allow transmission of data to Earth at a
specified rate for a given period of time once cach day.
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The antenna can be deployed from its stowed position through either side of the Lander
depending upon which side is "Up'. On command from the Computer-Sequencer, a
spring loaded mechanism will be released to rotate the antenna out of the Lander,

(fig. 4.4-4). Full deployment about the erection axis will activate a switch to pro-
vide power to the Antenna Control System shown on fig. 4, 4-5,

The two stepper motors shown on fig., 4.4-4 and 4, 4-5 provide the motion, 9; and O
which positions the antenna. The commands to the stepper motors are Earth based
signals since the data reduction and signal processing are done by computer on Earth
the signals of this control system that are sent from the landed Capsule to Earth are:

1. 6 angular position readout of antenna rotation about elevation axis
I,

2. 62 angular position readout of rotation of the "boom"

m’

3. (-)X’ angular readout from clinometer, gives the attitude of the 6j Lander with
respect to local vertical-

4, digital output of Sun sensors.

/STEPPER MOTOR NO.2

82
"~ ELEVATION AXiS

/‘\ STEPPER MOTOR NO.I

Figure 4.4-4. FEarth Pointing Antenna Mechanism
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The data received on Earth from the above signal sources is processed on an Earth
based computer to determine the orientation of the pointing vector of the antenna in
terms of the Earth -Sun-Mars relationship. Angular position command changes are
then sent from Earth to drive stepper motors no. 1 and no. 2 to change the orientation
of the antenna, This process is repeated until the desired antenna orientation is ob-
tained, and changes in orientation are made periodically during extended life missions
to maximize the data that is transmitted.

The stepper motors that provide the motions 6, and 8, were used on the Surveyor Pro-
gram to drive the antenna mechanism. Each motor weighs 1.2 1b and has a rated torque
of 27 in-oz. The Sun sensors are the two-axis Adcole digital solar aspect systems
which have been applied to a number of space missions. Each sensor has a field of
view of 1280 with a 10 accuracy. Three such sensors are positioned on the antenna to
increase the overall field of view, Each sensor weighs approximately 3 oz. and is con-
tained in a 3.175 x 3.175 x 0, 8 case. The sun sensor electronics package selects the
output of a Sun sensor and converts it into a form for telemetry back to Earth. The
clinometer shown on fig. 4.4-5 is part of the basic science package.

This Earth Pointing Antenna Control System minimizes the weight required on the
Lander but has the disadvantage of providing closed loop control via Earth based data
reduction and issuance of commands. As such, this system can be used on extended
life missions where sufficient time is available to allow a series of antenna pointing ad-
justments to be made,

4.4.3 CAMERA INSTALIA TION

Each of the two cameras is a combined high resolution-low resolution instrument
mounted on the free end of a pivoted, tubular boom. Each boom is fabricated from
aluminum alloy material with an approximate length of 30 in. and an outside diameter of
2 in. (see fig. 4,3-5). In the stowed position, the two booms lie in an almost-hori-
zontal position in the central bay in an over-and-under arrangement and are supported
in this position by aluminum honeycomb saddles placed between the booms and the con-
tainer covers and, in addition, between the two booms. These supports clamp the
booms securely to resist the impact loads experienced by the booms during landing

on Mars. Deployment is automatically initiated by a torsion spring at the hinged end
of the boom when the uppermost central bay door is released and jettisoned pyrotech-
nically. The deployment sequence is as follows. When the upper door is removed, it
takes the boom support saddles with it. This permits the upper boom to rotate about
its hinge. Once the saddle on the back of the upper boom clears the lower boom, the
lower boom in turn rotates. In the final deployed condition the two booms are vertical
and spaced at opposite ends of the central bay. In this position the booms are latched
against further movement,
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4.6 ELECTRICAL POWER SUBSYSTEM

4.6.1 TRULY AUTONOMOUS CAPSULE

This concept presents two problems that differ somewhat from other Lander designs
which employ a relay link,

The peak demand of the Entry Telecommunication Subsystem causes a peak demand
three or four times greater than is usually the case. Secondly, the southerly landing
site has forced an increase in the size of the solar array.

Power control, switching and power regulation is also provided by the EP&D Sub-
system. Battery sizing of the system meets a 3-day minimum surface lifetime, with
no regenerative power. The latter also supports the extended mission by serving as
a collection for the solar array.

A 40 ft2 solar array system was provided in the design. Tor the landing site and
encounter date of the reference mission, the solar array provided an average power
of 7. 96 watts.

Two batteries were provided in this design to handle the diverse load requirements of
the system. One battery was used to provide the high discharge rate of the direct entry
communications links while a second battery was used for the other equipment. A
weight saving of about 9 1b could be achieved by using two batteries. A single battery
system would have to be oversized to accommodate the high discharge rate. The high
discharge rate battery was also used to supply high energy pulse currents in the
system,

The remaining components in the subsystem consisted of a charge regulator for
charging the battery from the solar array, voltage regulator for providing the required
regulated voltages to the equipment and a power controller to perform the power
switching functions.

A power profile which shows the power demand vs time for the mission is presented
in fig. 4.6-1. This diagram shows the 3-day cycle on battery power with the solar
array supplying power afterwards for the remainder of the mission. The peak power
demand occurrs at time of entry when the direct link is operated,

A block diagram of the Capsule electrical system is presented in fig, 4,6-2,

4.6.2 D/E LANDER WITH DETFLECTED RELAY

For this design, the Electrical Power and Distribution Subsystem consisted of a
solar array/battery system with a 25 ft2 solar array. This reduction in solar array

size is due to the more favorable landing site for this specific mission. The same
amount of average power is obtained for this reduced size array,
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The data received on Earth from the above signal sources is processed on an Earth
based computer to determine the orientation of the pointing vector of the antenna in
terms of the Earth -Sun-Mars relationship. Angular position command changes are
then sent from Earth to drive stepper motors no. 1 and no. 2 to change the orientation
of the antenna. This process is repeated until the desired antenna orientation is ob-
tained, and changes in orientation are made periodically during extended life missions
to maximize the data that is transmitted.

The stepper motors that provide the motions 8, and 8y were used on the Surveyor Pro-
gram to drive the antenna mechanism. FEach motor weighs 1. 2 1b and has a rated torque
of 27 in-oz. The Sun sensors are the two-axis Adcole digital solar aspect systems
which have been applied to a number of space missions. Each sensor has a field of
view of 1280 with a 10 accuracy. Three such sensors are positioned on the antenna to
increase the overall field of view. Each sensor weighs approximately 3 oz. and is con-
tained in a 3,175 x 3.175 x 0, 8 case. The sun sensor electronics package selects the
output of a Sun sensor and converts it into a form for telemetry back to Earth. The
clinometer shown on fig. 4.4-5 is part of the basic science package.

This Earth Pointing Antenna Control System minimizes the weight required on the
Lander but has the disadvantage of providing closed loop control via Earth based data
reduction and issuance of commands. As such, this system can be used on extended
life missions where sufficient time is available to allow a series of antenna pointing ad-
justments to be made.

4.4.3 CAMERA INSTALIA TION

Each of the two cameras is a combined high resolution-low resolution instrument
mounted on the free end of a pivoted, tubular boom. Each boom is fabricated from
aluminum alloy material with an approximate length of 30 in. and an outside diameter of
2 in, (see fig. 4.3-5). In the stowed position, the two booms lie in an almost-hori-
zontal position in the central bay in an over-and-under arrangement and are supported
in this position by aluminum honeycomb saddles placed between the booms and the con-
tainer covers and, in addition, between the two booms. These supports clamp the
booms securely to resist the impact loads experienced by the booms during landing

on Mars. Deployment is automatically initiated by a torsion spring at the hinged end
of the boom when the uppermost central bay door is released and jettisoned pyrotech-
nically. The deployment sequence is as follows. When the upper door is removed, it
takes the boom support saddles with it. This permits the upper boom to rotate about
its hinge. Once the saddle on the back of the upper boom clears the lower boom, the
lower boom in turn rotates. In the final deployed condition the two booms are vertical
and spaced at opposite ends of the central bay. In this position the booms are latched
against further movement.
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This arrangement of relatively short swinging booms, with the capability to erect two
cameras on either side of the Lander and take pictures over the edge of the Lander in
segments, was selected as the most satisfactory compromise belween the need for
simple and stable erection devices and the requirement for adequate azimuth and ver-
tical angles of uninterrupted vision. Studies were made of telescoping (not hinged)
tubes as an alternate design, but the resulting designs proved to be unsatisfactory.
Telescoping tubes cannot easily be made to extend in two directions, as required for
two-way deployment capability. In addition, it was found that if & single camera is
desirable, the telescopes had to be several feet long in order to provide adequate ver-
tical angeles of vision over the edge of the Lander's impact attenuator. Booms of such
length posc serious problems regarding camera stability.

The central bay door(s) of the flat pack container are secured with bolts incorporating

a hot-wire rclease and jettisoned by springs with sufficient force to ensure that they
fall clear of the Lander,
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4.5 TELECOMMUNICATION SUBSYSTEM

4.5.1 AUTONOMOUS

For the truly autonomous concept which employs adirectlink during entry, system coun-
figuration is as shown in fig, 4.5-1. The direct link during entry transmits the
equivalent of 200 bps using 32 level FSK, as discussed in Section 2,2.1. After landing,
the direct links to Earth are used for the transmission of data and for the reception

of commands to control Capsule operations. The 20 watt S-band transmitter with the
24 dB gain pointed antenna transmits at rates of 2000, 1000 and 500 bps, enabling the
return of 3 x 106/1. 5 x 109 and 0. 8 x 106 bits during each 30 min transmission

period. Commands are received at 1 bps using the broad beam low gain antennas.

4.5.2 DEFLECTED RELAY SUPPORT MODULE

The Capsule Communication System for the relay missions comprises the 400 MHz
relay link, S-band direct link, and data handling subsystems (fig. 4.5-2).

Throughout the mission the system collects engineering diagnostic and performance
data. During interplanetary cruise this data is read out by the support Module
Telemetry System for transmission to Earth. After separation, a relay link is
used. A 1000 bps link is established during this time using the 400 MHz, 50-watt
transmitter and antenna. Operation of this link is intermittent until the atmosphere
entry and descent phases begin.

When the Capsule encounters the atmosphere, data from the entry science instruments
is multiplexed with the engineering data resulting in a 500 bps data collection rate.
The combined data is transmitted in real time as well as after a 100 sec delay,

chosen to minimize the loss of data caused by blackout. Real time and delayed data
are interleaved to produce a 1000 bps transmission rate. The direct S-band link is
identical to that described in Section 4.5.1.
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4.6 ELECTRICAL POWER SUBSYSTEM

4.6,1 TRULY AUTONOMOUS CAPSULE

This concept presents two problems that differ somewhat from other Lander designs
which employ a relay link.

The peak demand of the Entry Telecommunication Subsystem causes a peak demand
three or four times greater than is usually the case. Sccondly, the southerly landing )
site has forced an increase in the size of the solar array.

Power control, switching and power regulation is also provided by the EP&D Sub-
system. Battery sizing of the system meets a 3-day minimum surface lifetime, with
no regenerative power. The latter also supports the extended mission by serving as
a collection for the solar array.

A 40 ft2 solar array system was provided in the design. I'or the landing site and
encounter date of the reference mission, the solar array provided an average power _
of 7. 96 watts.

Two batteries were provided in this design to handle the diverse load requirements of .
the system. One battery was used to provide the high discharge rate of the direct entry
communications links while a second battery was used for the other equipment., A

weight saving of about 9 b could be achieved by using two batteries. A single battery _
system would have to be oversized to accommodate the high discharge rate. The high

discharge rate battery was also used to supply high energy pulse currents in the

system, _

The remaining components in the subsystem consisted of a charge regulator for
charging the battery from the solar array, voltage regulator for providing the required
regulated voltages to the equipment and a power controller {o perform the power
switching functions.

A power profile which shows the power demand vs time for the mission is presented
in fig. 4.6-1. This diagram shows the 3-day cycle on battery power with the solar
array supplying power afterwards for the remainder of the mission. The peak power
demand occurrs at time of entry when the direct link is operated,

A block diagram of the Capsule electrical system is presented in fig. 4.6-2,

4.6.2 D/E LANDER WITH DEFLECTED RELAY

For this design, the Electrical Power and Distribution Subsystem consisted of a
solar array/battery system with a 25 ft2 solar array. This reduction in solar array

size is due to the more favorable landing site for this specific mission. The same
amount of average power is obtained for this reduced size array,
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The power profile which shows the power demand vs time for this mission is pre-
sented in fig. 4.6-3. A single battery is a better solution and is used here.

The remaining components in the system are similiar to those defined for the Direct
Entry Autonomous Capsule. The only difference between the two designs is that small
thermal batteries with the required control and limiting equipment were provided to
operate the pyrotechnics in the system.

The block diagram of this Capsule electrical system is presented in fig. 4.6-4.



Figure 4, 6-4, Capsule Electrical
System Block Diagram (Sheet 1 of 2)
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4.7 ENTRY VEHICLE ATTITUDE CONTROL

The Attitude Control Subsystem is similar for both Autonomous concepts. The only
difference results from mission changes in mass properties.

The first requirement of the Capsule ACS is to control the attitude of the Capsule
during the 24-hour pre-entry phase such that the angle-of-attack at entry meets the
entry requirements. With the Support Module spin-stabilized at 10 rpm, the
Capsule at separation will also have a spin rate of 10 rpm. This spin rate will be
sufficient to maintain the inertial attitude of the Capsule by means of gyroscopic
stability during the 24 hr pre-entry period. Since the spin attitude at the time of
separation is within +40° of the inertial direction of the entry angle, the continued
Capsule spin will satisfy the entry angle-of-attack requirement.

The second requirement of the Capsule ACS is to provide attitude stability during entrv

to prevent divergence to a trim angle-of-attack. This condition may be induced when
the aerodynamic torques on the relatively blunt Capsule act to produce a sufficiently
high roll rate in an environment of low dynamic pressures. Therefore, the Capsule

spin control system using a liquid monopropellant (hydrazine) reaction control system,
a single rate gyro, and associated electronics will be initiated at the begining of entry.

The Capsule will be de-spun andthe roll rate will be controlled throughout entry to
a value in a deadband of +2. 5 rpm about a zero rpm level.
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4,8 CANISTER AND ADAPTER

Due to similarity, both Autonomous Concepts are treated together.
4,8.1 DESIGN CONSTRAINTS
Canister and adapter design constraints are:
1. Withstand an internal pressure
2. Withstand the inertial loads of launch and powered flight
3. Provide adequate clearance between the heat shield and canister
4, Provide a combined separation and field joint
5. Provide support for the entry system
6. Transfer loads between entry system, Support Module, and transtage.

Due to the requirement to maintain biological integrity within the internal portion of
the canister, it was necessary to evaluate the effects of an internal pressure on the
shape, material and construction of both the forward and aft canisters. Inertial
loading of the canister during flight and handling conditions, including equipment
loadings on the aft canister, were traded off against the differential pressure to
determine the more severe loading environment for the canister structure,

A driving influence on the canister size was the allowance necessary for clearances
between the entry system and canister, estimated to be 1.9 in. Minimum leak rate
was the overriding criteria for the canister joint.

The entry system is supported within the Capsule system. This design provides the
capability of withstanding and transferring the entry system inertia loads through
the adapter structure to the transtage ring,

4.8.2 CANISTER STRUCTURAL DESCRIPTION

The forward canister is a hemispherically-shaped minimum gauge aluminum shell
making a tangent at its maximum diameter through a quarter torus section. The
hemispherical shape has been shown in previous analyses to be considerably stiffer
from a dynamics standpoint than a conical shape. This structure has been designed

to act as a pressure vessel. The torus section is provided to eliminate the inboard

kick loads and minimize shell bending at the field joint ring due to the internal pressure.
The minimum gauge (0.020) aluminum material is more than adequate to withstand

the pressurization and inertial loads imposed on it.
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The forward canister has been designed such that there will be no yielding under
design load conditions and no failure under ultimate design load conditions. This
includes the transient and steady state loads encountered under the conditions of
handling, transportation, sterilization, pre-flight, powered flight, transit and
separation,

Inertial loading conditions were determined to be less severe than the internal
pressurization condition in the design of the canister and the field joint ring. As a
result, the pressure loading condition determined the desired construction, material
and thicknesses to be used in the structural design of both the forward and aft canister.
The limit pressure condition for the canister is 1. 0 psid internal pressure, and the
structure is designed, using a 1, 7 safety factor, to withstand a 1. 7 psid burst
pressure. Stiffeners to rigidize the shell for dynamic and ground handling loads

have been provided.

The field joint rings for the forward and aft canisters provided a seat for the band-
clamp, which holds the canister halves together, resist the loads imposed by the
internal pressure and the band clamp, and provide for the pressure-tight sealing of
the canister assembly. The aft canister ring slides under the forward mating ring and
has an internal leg, as shown in fig. 4.8-1. The combined inertia of the forward ring,
aft ring and bulkhead is more than adequate to insure structural stability of the

field joint under the critical load condition,

FORWARD RING

OUTSIDE INSIDE
-A P =0,5PSID MINIMUM
BAND GLAND SEAL
FACE SEAL
SLIPPER

~—— AFT RING

Figure 4. 8-1, Canister Field Joint
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The aft canister is sized for the internal pressure which dictates the same minimum
sheet gauge as the forward canister. It is essentially spherical conical in shape with
the forward end shaped in a quarter torus and tangent with the maximum diameter
and the conical afterbody as shown in figs. 4.3-1 and 4.2-1. Stiffening members are
located between the adapter and the aft canister intermediate ring to stabilize the
canister under lateral loads.

4.8.3 ADAPTER

The two adapter structures provided are the Spacecraft adapter and the Support Module
adapter. The Spacecraft adapter consists of two parts, one external to the canister and
one within the canister. During powered flight both of these adapters transfer the

loads from the entry system and the Support Module to the Transtage ring. The Support
Module adapter has the additional function of connecting the entryv system to the

Support Module during space flight,

The external and internal Spacecraft adapters are conical aluminum shells with
longitudinal stiffeners as shown in figs. 4.3-1 and 4.2-1. The shells and stiffeners

have been sized such that the section modulus and working area are more than adequate
to withstand the bending moment and axial loads which the structure will experience.

The inertial loads used in determining the necessary section properties of the cylindrical
skin and stiffeners were 6 g's limit in the axial direction and 2 g's limit in the lateral
direction,

4.8.4 PRESSURE AND VENTING SYSTEM
The basic function of the Pressure and Venting System (P&V) is to prevent recontamination
of the Capsule by maintaining a minimum differential pressure (A P) between the canister

and the ambient environment from sterilization until prior to canister separation.

4.8.4.1 Design Constraints

The P&V system design constraints are:
1. Provide inlet and outlet ports into the canister for sterilization
2. Provide circulation of dry nitrogen during sterilization
3. Provide pressure relief due to temperature variations
4. Maintain a positive AP between 0.5 and 1.0 1b/in. differential (psid) between

the canister and ambient atmosphere from sterilization until exit from Earth's
atmosphere
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5. Vent internal gas during ascent to maintain AP below 1 psid
6. Evacuate all entrapped gases to ambient space vacuum,

4,8.4.2 P&V System Description

The P&V system prevents the internal pressure within the canister, during sterili-
zation, after sterilization and during powered flight, from exceeding 1 psid. This
is accomplished using a combination relief valve with a solenoid override which
opens at a nominal pressure of 15. 6 psig with increasing pressure and closes at a
nominal pressure of 15.3 psig with decreasing pressure. A biological filter is in-
stalled upstream of the valve to filter out any bacteria flowing upstream. Relief of
a pressure buildup due to a temperature increase is accomplished using the same
valve described above.

During sterilization, the P&V system provides for inlet and exit of sterilized gas by
using a manually operated inlet valve connected to the sterile, filtered air supply,
and electrically opening the vent valve for use as the outlet port. Since the gas will
pass through the biological filter, it must be pre-filtered by ground support equip-
ment to prevent clogging of the "prime flight filter'". Two circulating fans are used
to speed up the heating and cooling cycles and to eliminate hot spots. These fans are
used only during sterilization and their power will be provided by ground support
equipment, The makeup gas supply remains connected to the manually operated
valve after sterilization and is removed just prior to launch. The canister is vented
after launch and throughout powered flight until the canister reaches 0.5 psia. The
canister remains pressurized at approximately 0.5 psia less leakage, after exiting
the Earth's atmosphere until prior to canister separation; at which time, the vent valve
will be electrically opened to evacuate the canister to near space vacuum.

To minimize the possibility of backflow during venting, the exit port from the canister
is shaped as a convergent nozzle. It has been shown that in a convergent nozzle flow
separation does not occur. Thus the possibility of gas flow upstream during venting
is almost nil. This will preclude the entry of bacteria during the venting process
when the valve is open.

The vent valve, used to vent the canister during poweredflightis sized by the amount
of gas and maximum permissible AP. For the direct link Lander design there is
an initial canister volume of 400 ft3 of gas and for the Capsule and deflected flyby
canister the initial volume is 500 ft3, The nominal fill pressure will be 15. 45 psia
at 70°F. The required valve apertures are equivalent to a 6. 85 in. 2 ¢circular orifice
for the direct link Lander and 9.9 in. 2 for the deflected flyby.

The valve is a spring-~loaded, pilot-operated relief valve with a latching override
solenoid, and a position indicating switch. This permits its use for relief, venting,
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purging and evacuation. The proposed valve will be similar to Sterer P/N 19260,
Pneumatic and Pressure Control Valve Assembly. Thebasic changes requiredto the
valve relate to operating pressure and orifice area. It is estimated that the proposed
valve will weigh 6.5 and 8, 1 1b respectively for direct link and flyby Landers.
Electrical power required for the solenoid is 1.5 amps at 30 vde at 70°F for 1/2

sec maximum.

The biologicalfilter is used to preventbacteria migration into the Capsule throughthe vent
valve inthe event the valve fails in the open position., Thefilterisinstalledin series with
the valve and upstream of it, Thefilter is requiredto prevent upstream migration of
bacteria while presenting a low pressure droptothe air being vented. Using Pall Corp's
Ultipor 0.9 medium, filter area of approximately 12.5ft2 is required for the direct link
and 15. 7 ft2 for the deflected flyby Lander. The filter assembly willbe 10.25 in. long
by 7.5 in. diameter and would weigh approximately 4.5 1b for the former and 11. 2 in.
long x 6.2 in. diameter with a weight of 5.7 1b for the latter.

The choice of Ultipor 0.9 was made because it presents a lower pressure drop than
Ultipor 0. 15, while satisfying the filtering requirements. It has a catalog rating of
100 percent removal of 0.0% micron particles in dry air. The filter can be decon-
taminated with ETO and has a temperature rating of 350°1 in air,

4.8.5 SUBSYSTEM SEPARATIONS

Five separation functions are required for the Autonomous Lander designs. These
are:

1. Release and separation of forward canister shell,

2. Release and separation of the Capsule and Support Module from the aft
canister structure.

3. Release and separation of the Capsule from the Support Module.
4, Release and separation of the Lander from the aeroshell.
5. Release of parachute {rom the Lander.

Each separation cvent has been designed to meet the following requirements in addition
to the usual environmental criteria,

1. Separation shall not produce debris or loose objects.

2. Separation shall not cause collision with any of the remaining payload.



3. Provide electrical initiation of separation function.
4. Provide redundancy in initiation function.
5. Maximize use of proven concepts.

4.8.5.1 Separation Description

4.8.5.1.1 Canister Separation
The canister separation equipment has been designed to:

1. Provide a combined field and separation joint.

2. Maintain a pressure-tight joint from sterilization through exit from the
Earth's atmosphere for a maximum internal pressure of 1. 67 psid. Pressure
tight is defined as leakage which results in less than 0. 002 psi drop/hr at
T0°F.

3. Maintain maximum attainable pressure tightness during space cruise where
outside temperature may be as low as -300°F.

4. Eject the forward canister at a controlled separation rate.
The selection of the separation method for the canister is governed by the require-
ment for a sterile, pressure-tight joint for a large, flexible structure. This basic
requirement limits the separation joint design to one that can apply a continuous
distributed force, such as flexible shape charge, various types of MDC or primer
cord, V-bands,closely spaced bolted joint, "pyro fuze' joint system or a thermal
heat pad joint system, The V-band system was selected because of its simplicity,
reliability, low separation shock, lack of debris, tolerance to temperature environ-
ment, eliminates need for a field joint, and it presents a tortuous path for microbial
access to the separation interface.
The band must meet the following specific requirements:

1. Contain proof pressure without yielding

2, Provide the necessary clamping force without yielding

3. Contain the burst pressure without failing

4. Make allowance for creep at low temperature over a 9 month period,
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The V-band assembly is made in four segments, with the strap material being
2024T86 aluminum, 1 in. wide x 0. 25 in. thick., The slippers which are attached to the
band by clips, are made of 7075T73 aluminum. The V-band segments are held in
tension by four hot-wire bolt assemblies. The choice of four points for attaching and
torquing was made to maintain nearly uniform tension on the entire band and to facilitate
band disengagement. The hot-wire bolt is a mechanical separation device which
utilizes the reduction of tensile strength property of a material upon heating to actuate.
Upon application of 12 amps for 30 msec, the hot-wire element breaks and separation
occurs. The hot-wire bolt consists of two separate studs connected by a segmented
coupling. The coupling is held together by the hot-wire element, so that tension can
be carried by the mechanism,

The required preload of 7300 1b maximum can be applied through 1/2 in. diameter
thread and a 1, 30 in. o.d. coupling (see fig. 4. 8-2) made of 17-4 PH, Cond 1050
steel with an ultimate load capacity of 19, 000 1b tension. Thirteen turns of 0,025 in.
diameter 302 stainless wire form the hot-wire element. The segments of the coupling
are retained sothat thereisno debris, This unitis ideal for longservice in space be-
cause of its all metal design. The band will separate if any of the four bolts operate.

HOT WIRE TENSION BOLT

— 40 |@— A" ——T 1.00 —
TED."T"
UNF. SERIES L\‘ i' | ? T
| ; SEGMENT g
DIA.
DIA.
I | | : | I I "CY (REF.) :
] |
CANISTER MAX. PHYSICAL DATA HOT WIRE DATA
DIA. LOAD WIRE  NOTCH . A.F, WT
(FT) (LBS) A B T c DIA. DIA. TURNS CURRENT =
12-16 19,000 1.40  1.62 1/2  1.30 . 025 . 0075 13 12.0 .81

ALL DIMENSIONS ARE IN INCHES

Figure 4, 8-2, Hot-Wire Tension Bolt
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The forward canister is ejected by four helical coil compression springs that provide
a separation velocity of 2.5 fps. The springs are of 302 stainless steel, stressed

at 90, 000 psi and are retained with the aft canister, in an adjustable subassembly (see
fig 4.8-3). Tip-off rates will be less than 2.0°/sec about any axis. Center of gravity
offsets are expected to be minimal since the forward canister is of symmetric
construction.

The canister separation joint seal utilizes two silicone rubber O-rings to maintain a
pressure-tight seal. The O-rings are used in two different modes to enhance sealing
capabilities, one O-ring being a face seal and the other a gland seal (see fig. 4. 8-1).
This arrangement utilizes the axial and radial clamping forces of the V-band and
closes off the clearances resulting from manufacturing tolerances, while retaining

a machineable and structurally sound ring design. The face seal O-ring is nominally
0.189 in. diameter and is compressed from 0.014 in. to 0.041 in., or 10 to 30 percent.
The force necessary to compress this O-ring using 50 durometer silicone is from
1.2 - 12.0 lb/linear in. The gland seal is nominally 0. 210 in. diameter and is com-
pressed from 0.030 to 0. 70 in., or 15 to 35 percent. The radial force to compress
this ring is from 6 to 35 lb/linear in.

STOP OUTER SLEEVE

(SLOTTED)
CAPSULE
+.01 ,—(-
ADAPTER ‘ 2,200 - 00 |
(LST . 010) i
INNER SLEEVE,
TEFLON COATED

: CAPTIVE - T
oo /_7

P N |
PILOT " ! Qy . - (O®)
|

J

—
s = -

STROKE
INIT. LOAD 1. 60 STROKE
ADJ, NUT . ADJ. NUT
1.12
MAT. - AL-AL WT. - SPRING - .20 #
MECH. - .35 #

Figure 4.8-3. Spring Assembly
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Silicone rubber was selected because it has the best low temperature properties --
rated to -80°F for seals, but doesn't harden until -150 to -180°F. Therefore, it is
expected that the seal will degrade during the space cruise. If it is mandatory that
a seal be maintained, then thermal insulation could be applied to the band to keep the
temperature above -150°F.

The ability of the separation joint to inhibit the penetration of bacteria is further

enhanced by the tortuous path which they must follow to gain entry into the Capsule.

The slipper is in full contact with the ring except for a 1/4 in. gap between the —
5.75-in. long slippers, or a total of 96 percent of the circumference is covered by

the slippers. The band, of course, covers the entire circumference except at open-

ings for the hot-wire bolts, which probably will be about 1-1/2 in. long each, or

94,5 percent band coverage.

4.8.5.1.2 Spacecraft Separation —

The Spacecraft is attached to the adapter by eight explosive nuts, each having dual

cartridges (see fig. 4.8-4). The explosive nut is of the captive type, with all loose -~
pieces contained within the unit. The gas generated by the squibs is also contained.

The choice of the explosive nut was made because of its reliability, capability for dual

squib ignition, low weight, and high load carrying capacity. To support the Space-

craft weights of 2623 1b for the direct link Lander and 2489 1b for the deflected flyby,

eight 1/4-in. explosive nuts were provided at the eight pick-up points on the Space-

craft structure. Spacecraft ejection is accomplished by cight helical coil compression

springs, which impart a Spacecraft separation velocity of approximately 1.15 fps.

The weight of this Separation Subsystem is 6.4 b,
4.8.5.1.3 Entry Vehicle Separation

The main consideration for Capsule separation and ejection was for close control of
the tip-off rate. To meet this, it is necessary that the impulse generated by the
separation device be either very low or nearly the same at all points. Likewise the
ejection system must have controlled force and energy, with low variances; and the
center of gravity offsets and ejection system force axes must be controlled.

Separation devices that meet the above needs are ball-locks, collet releases and

explosive nuts. The latter was chosen because of their compactness and ease of

use and installation, All of the above utilize pressure cartridges for operation, and -
for high reliability dual cartridges will be used. This introduces the problem of wide

inpulse variance as a function of gas pressure (a function of cartridge design,

simultaneity and number of cartridges firing). -
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HOT-WIRE NUT

/ASSEMBLY
| | HOT-WIRE ELEMENT
1 (TENSION LINK)

BODY "A"

Bopy "B"

SHEAR TIE

CROSS-HATCHED PARTS REMAIN TOGETHER AT SEPARATION.

SHEAR TIE ADAPTER IS PART OF NUT ASSEMBLY INITIALLY
Figure 4. 8-4. Hot-Wire Separation Nut

The ejection systems that are available are pneumatic pistons, pyrotechnic thrusters,
reaction systems and springs. Springs were selected for their obvious simplicity. To
minimize tip-off rates, the energy and force of the ejection system must be controlled.
The proposed solution uses preset springs in an energy package, with selective assem-
bly and gives a maximum tip-off rate of 0, 25°/sec when the maximum and minimum
spring forces are combined with the worst case center of gravity offset.

The Capsule is attached to the adapter by four 1/4-in. explosive nuts, of the type de-
scribed in para 4,8.5.1 and shown on fig, 4.8-4. Four nuts are provided at the four
pickup points on the structure.

Capsule ejection is accomplished by four helical coil compression springs of the type
shown in fig. 4.8-3. The springs impart a separation velocity of 1.82 fps and 1.9 fps,
respectively for the direct link and deflected flyby Landers. Tip-ff imparted to the
Capsule will be approximately 0, 20°/sec for the two Autonomous Landers. The sub-
system will weigh 3.2 1b for either type Lander.



4.8.5.1.4 Aeroshell-Lander Separation

The aeroshell to Lander attachment utilizes four hot-wire separation nuts of the type
previously described for the Spacecraft and Capsule separation systems. IFD's
for electrical separation are of the self disconnect type.

The weight of the aeroshell separation system is 1.0 1b.
4.8.5.1.5 Parachute-Lander Separation

The parachute compartment will be secured to the payload by three explosive nuts,
each having dual cartridges, attached to bolts passing through the attachment and
tie-down fittings. These will be similar to the explosive nuts used for Capsule separa-
tion. The main parachute tie-down and deployment loads will be carried by these
separation devices,

When the descending Lander is 150 + 50 ft from the surface, a signal will be sent
from the vehicle power supply to the explosive nuts. This will cause release of the
parachute compartment/mortar assembly from the Lander. The Lander will free-fall
to surface impact. The jettisoned main parachute will collapse and spill to one side
due to the sudden release of loading from the suspension lines while the parachute was
fully inflated.
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5. WEIGHT STATEMENTS

5.1 AUTONOMOUS CAPSULE

5.1.1 WEIGHT SUMMARY AND EQUIPMENT LIST

The equipment and the weight composition of the Autonomous Capsule is given in the
following tabulations for the Lander, Aeroshell, deceleration system, canister adapter
and spin-stabilized Support Module. Fig. 5.1-1is included to identify systems of the
weight composition prepared. Table 5.1-1 gives the system mass properties at key
events in the mission sequence to Lander operations. The Capsule reference axis for

mass property data is shown in fig, 5,1-2,

5.1.1.1 Lander Detail Weight Statement

TRULY AUTONOMOUS

Structure

Internal Webs

Rings

Honeycomb Torus

Main Cylinder Wall and Supports
Honeycomb Covers
Miscellaneous and Fasteners

Quantity Item

Science Equipment

(Entry)
Mass Spectrometer
Resistance Thermometers
Variable Pressure Transducer
Triaxial Accelerometer
Water Vapor Detector

— =Ny by —

(Surface)
Facsimile
GCMS/Pyrolysis
Wolf Trap
Soil Sampler

— == pY

Total Weight

235.0

26.
38.
83.
18.
40.
30.

[=R e R an B e B co B el

Total Weight
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Lander Weight (Continued)

DN NN DN

Flatinum Resistance Thermometer
Capacitance Diaphragm
Clinometer

Camera Deployment Mechanism

Telecommunications

—— e = p) Qo M = N N

Transmitters (100 W)
Exciters

Antenna

Transmitter (20 W)
Transponder/Exciter
Antenna (hi-gain)
Circulators

Antenna, S-band (lo-gain)
Command Detector
Conditioner, Signal Data
Multicoder

Impact Measurer

Electrical Power and Distribution

1
1
1
1
1
1
4
4
A

R

Battery

Battery

Charge Regulator

Voltage Regulator
Controller

Unit, Breaker and Limiter
Solar Array Panels

Solar Array Mechanism
Harness

Control Equipment

e el I

Stepping Motors (Antenna)
Sun Sensors (Antenna)
Controller Motor (Antenna)
Electronics, Sensors
Temperature Detector
Temperature Control

Computer and Sequencing

1

5-2

Memory Unit

Total Weight
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Lander Weight (Continued)

1 Processor and Sequencer
1 Programmer
1 Command Decoder

Environmental Control (Passive)

Attenuation

Total Lander Weight

5.1.1.2 Aeroshell Detail Weight Statement

Structure

Honeycomb Shell (0.885 & 1,018 psf locally)
Honeycomb Shell Closeout and Corefill
Shelf and Support Module Separation Ring
Lander Separation Ring and Supports
Miscellaneous and Fasteners

Heat Shield (35 PCF, ESM-1004 AP)

Quantity Item

Entry Science

1 Stagnation Temperature Transducer
4 Stagnation Pressure Transducers

Electrical Power & Distribution

1 IFD Lander-A/S

1 IFD Capsule-S/C
8 Hot-wire Release
A

Roll Control Sybsystem

1 Regulator
1 Initiator, De-spin

Total Weight

LW =1
o OO

o
w
el

280.0

955.6

Total Weight

264.4

132,
24,
44,
36.
27.

SO W W w s

175.2

Total Weight
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Aeroshell Weight (Continued) Total Weight

1 Gyro, Rate 1.4
2  Valve, Solenoid Thrust 2.4
2  Reactor 3.0
1 Valve, Tank Squib 0.1
3  Valve 1.5
1 Helium Tank (with Gas) 3.0
1 Hydrazine Tank (with Gas) 15.0
2  Nozzles 0.2
AR Lines 1.5

Total Aeroshell Weight 479.8

5.1.1. 3 Deceleration System Dctail Weight Statement

Total Weight

Pilot Parachute Mortar Thermal Cover 1.8
Pilot Extraction Parachute (Modified Ringsail) 7.2
Main Parachute Compartment Thermal Cover 8.0
Main Parachute. 2 Stage Deployment (Modified Ringsail) 195,0
Main Parachute Attachment Riser 2.0
Parachute Compartment, Including Mortar 15,0
Parachute Attachment and Tie-Down Fittings (3) 2,0
Compressed Gas Supply 4.0
Pull Apart Electric Disconnect 0.2
Hot-Wire Separation Device 2.0
Mach 2 Sensor 3.0

Total Deceleration System Weight 240.2

5.1.1.4 Adapter/Canister Detail Weight Statement

Total Weight

Aft Canister/Adapter (Transtage End) 275.7
Structure 253.0

Adapter Structure 149.0

Canister 59.0

Separation Ring 15. 0
Miscellaneous and Fasteners 30.0
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Adapter/Canister Weight (Continued)

Quantity Item

Separation

8 Explosive Nuts
8 Springs

8 Spring Housings

Pressure and Venting

1 Pressure Control Valve
1 Biological Filter

2 Fan, Circulation

1 Fill Valve

AR Tubing

Forward Canister

Structure

Canister
Separation Ring
Miscellaneous and Fasteners

Separation

V-band Assembly
Hot-wire Bolts
Springs
Housings, Spring

Total Adapter/Canister System Weight

5.1.1.5 Support Module Detail Weight Statement

Structure

Outer Wall
Structural Rings

Honeycomb Fixed Solar Array Panel

Truss Tubes and Fittings

Total Weight

Total Weight

193.0



Support Module Weight (Continued) Total Weight

Miscellaneous and Fasteners 18.0
Quantity Item Reference Total Weight
Radio 45,0
2 Exciters MM '69 9.0
2 Power Amplifiers MM'69 21.0
1 Low Gain Antenna New Item 1.0
AR Controls, Switches, Harness New Item 14. 0
Telemetry 9.0
1 Commutator and Power Supply MM '69 9.0
Attitude Control 15. 0
1 Star Sensor New Item 6.0
1  Sun Sensor New Item 1.0
1 Damper New Item 2.0
AR Electronics New Item 6.0
Power Supply 110. 0
1 Battery MM '69 3l.0
1 Battery Charge andBoost Control MM '69 2.0
2 Boost Regulators MM '69 12. 0
AR 2.4 kHz Invertors MM '69 6.0
1 Power Source Logic MM '69 (Modified) 8.0
Control and Distribution New Items 7.0
(72 ft2 Total) Solar Cells (Panel
in Structural Weight) 44.0
Propulsion 77.2
4 Thrust Chamber Assemblies ATS-C, D & E 2.5
AR Propellant Tanks New Items 3.8
AR Pressurant Tanks New Items 5.0
AR Structural Supports andBrackets New Items 5.5
AR Lines, Valves, Regulators, Etc. New Items 12.0
AR Propellant and Pressurant 47.0
AR Residual Propellant and Pressurant 1.4
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Support Module Weight (Continued) Reference

Total Weight

Pyrotechnics 10.0
2 Pyro Controllers MM '69 9.0
AR Squibs .o
Mechanical Devices 14.0
AR Separation Mechanisms (From Spacecraft Adapter) 13.0
AR Switches and Timers MM '69 (Modified) 1.0
Temperature Control 16.0
AR Heaters New Items 3.0
AR Shields, Blankets, Finishes New Items 8.0
AR Louver Assembly MM '69 (Modified) 5.0
Cabling 29.0
AR Spacecraft Disconnect New Item 6.0
AR Harness New Item 23.0

Total Support Module Weight 518, 2

TABLE 5.1-1 MISSION SEQUENCE MASS PROPERTIES
Mass Moments of Inertia
Weight C enter of Gravity (slug—ft2*x)
(b) Z X Y
*Roll | Pitch | Yaw | Roll Pitch | Yaw

A. Spacecraft Launch Weight | 2601. 5 47,1 0.01 |-0.07]| 864 570 573
B. Spacecraft Injection Weight|2469.5| 47.2 | 0.0l | -0.07| 746 513 516
C. Spacecraft Cruise Weight |2193.8 43.5| 0.0l |-0.08] 559 354 357
D. Entry Weight 1675.6| 38.5| 0.01 |-0.11 | 334 204 206
E. Decelerated Weight 1195. 8 41. 8 0.02 [-0.16 94 64 67
F. Lander Weight 955. 6 38.2 0.03 {-0.20| 86 47 o0

*Distance from apex of aeroshell, **Taken about the center-of-gravity,
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5.2 DIRECT ENTRY LANDER WITH DEFLECTED RELAY SUPPORT MODULE

5.2.1 WEIGHT SUMMARY AND EQUIPMENT LIST

The equipment list and weight for the Direct Entry Lander and deflected Support Module
is given in the following tabulations for Lander, Aeroshell, deceleration system, canister
adapter, and spin-stabilized Support Module. Table 5. 2-1 gives the system mass prop-
erties at key events in the Mars mission.

Fig. 5.2-1 is included to graphically identify the weights. The coordinate system for
the mass properties are shown in fig, 5,1-2,

5.2.1.1 Lander Detail Weight Statement

DIRECT ENTRY LANDER WITH DEFLECTED RELAY
SUPPORT MODULE

Item Total Weight
Structure 213.0
Internal Webs 24.0
Rings 35.0
Honeycomb Torus 78.0
Main Cylinder Walls and Supports 16. 0
Honeycomb Covers 32.0
Miscellaneous and Fasteners 28.0

Quantity Item Total Weight
Science Equipment 60,0

(Entry)
1 Mass Spectrometer 8.0
2 Resistance Therometers 1.0
2 Variable Pressure Transducer 1.0
1 Triaxial Accelerometer 2.0
1 Water Vapor Dctector 2.0
(Surface)

2 Facsimile Cameras 5.0
1  GCMS/Pyrolysis 16. 0
1 Wolf Trap 8.0
1 Soil Sampler 2.0
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Lander Weight (Continued)

o N Do o

Platinum Resistance Thermometer
Capacitance Diaphragm
Clinometer

Camera Deployment Mechanism

Telecommunications

il ST I N R R R

Transmitter, UHF
Conditioner, Signal Data
Antenna, UHF Relay

Switch, Antenna

Multicoder

Impact Measurer
Transmitter, S-band
Antenna,S-band Transmitter
Transponder/Exciter
Antenna, S-band Recciver
Circulator, S-band

Antenna, S-band Transmitter
Command Detector

Electrical Power and Distribution

1
1
1
2
1
4
4
1
A

Battery, Operational
Regulator, Voltage
Controller, Powecer
Battery, Hi-rate

Unit, Breaker and Limiter
Solar Array Pancls

Solar Array, Mechanical
Regulator, Charge

R Harness

Control Equipment

— e e = B

Stepping Motors (Antenna)
Controller, Motor (Antenna)
Sun Sensors (Antenna)
Electronics, Sensors
Temperature Detector
Temperature Control Unit

Total Weight
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Lander Weight (Continued) Total Weight

Computer and Sequencing 19. 0
1 Memory Unit 5.0
1 Processor and Sequencer 4.0
1 Programmer 7.0
1 Command Decoder 3.0
Environmental Control (Passive) 25,0
Attenuation 260, 0

Total Lander Weight 809.3

5.2.1.2 Aeroshell Detail Weight Statement

Total Weight

Structure 217. 3
Honeycomb Shell (0, 885 psf and 1, 018 psf Locally) 102.1
Honeycomb Shell Closeout and Corfill 22.3
Shelf and Support Module Separation Ring 36.5
Lander Separation Ring and Supports 33.4
Miscellaneous and Fasteners 23.0
Heat Shield (35 PCF 1004 AP) 144. 6
Quantity TItem Total Weight
Entry Science 2.5
1  Stagnation Temperature Transducer 0.5
4  Stagnation Pressure Transducer 2.0
Electrical Power and Distribution 1.8
2  Battery 2.0
1 Controller 1.5
8 Hot-wire Release 2.0
1 IFD, Lander-A/S 0.9
1 IFD, Capsule-S/C 1.2
AR Harness 4.2
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Adapter/Canister Weight (Continued)

Cabling

AR Spacecraft Disconnect
AR Harness

Support Module Weight

New Item
New Item

Total Weight

TABLE 5. 2-1 MISSION SEQUENCE MASS PROPERTIES

Mass Moments of

Weight Center-of-Gravity Inertia LSIug—ft2**)
(Ib) Z X Y

*Roll  Pitch Yaw | Roll | Pitch{Yaw

A. Spacecraft Launch Weight 2471.8 | 48.6 0.15 -0.26| 773 594 | 594
B. Spacecraft Injection Weight | 2335.0 | 48.7 0.16 -0.27| 646 532 | 532
C. Spacecraft Cruise Weight 2065.4 | 44.8 0.18 -0.30| 476 373 | 373
D. Entry Weight 1426.2 | 35.7 0. 26 -0.44 | 241 156 | 156
E. Decelerated Weight 1011.5 | 39.1 0. 36 -0. 61 74 55 55
F. Lander Weight 809.3 | 35.1 0.45 -0, 77 67 37 36

*Distance from apex of aeroshell. **Taken about the center-of-gravity




Lander Weight (Continued)

Computer and Sequencing

Memory Unit

Processor and Sequencer
Programmer

Command Decoder

— e gt p—

Environmental Control (Passive)

Attenuation
Total Lander Weight

5.2.1.2 Aeroshell Detail Weight Statement

Structure

Honeycomb Shell (0. 885 psf and 1. 018 psf Locally)
Honeycomb Shell Closeout and Corfill

Shelf and Support Module Separation Ring

Lander Separation Ring and Supports
Miscellaneous and Fasteners

Heat Shield (35 PCF 1004 AP)

Quantity Item

Entry Science

1 Stagnation Temperature Transducer
4  Stagnation Pressure Transducer

Electrical Power and Distribution

2  Battery

1 Controller

8 Hot-wire Release
1 IFD, Lander-A/S
1 IFD, Capsule-S/C
AR Harness

Total Weight

LW ~3 & n

Total Weight

217,

3

144.

S = U w

6

Total Weight
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Aeroshell Weight tContinued)

Roll Control Subsystem

2
1
2
1
2
4
4
1
1
1
2
1
A

Fill Valve
Helium Tank (Including Gas)
Explosive Valve
Hydrazine Tank (With Propellant)
Filters
Solenoid Valves
Nozzles
Roll Rate Controller
Roll Rate Gyro
Squib Firing Module
Solenoid Drivers
Pressure Regulator
R Lines

Total Weight

Total Aeroshell Weight

5.2.1.3 Deceleration System Detail Weight Statement

Pilot Parachute Mortar Thermal Cover

Pilot Extraction Parachute (Modified Ringsail)
Main Parachute Compartment Thermal Cover
Main Parachute, 2 Stage Deploy (Modified Ringsail)
Main Chute Attachment Riser

Parachute Compartment Including Mortar
Parachute Attachment and Tie-down Fittings (3)
Compressed Gas Supply

Pull-apart Electric Disconnect

Hot-wire Separation Device

Mach 2 Sensor

Total Deceleration System Weight

5.2.1.4 Adapter/Canister Detail Weight Statement

Aft Canister/Adapter (Transtage End)

5-14
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Adapter Structure
Canister
Separation Rirg
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Adapter/Canister Weight (Continued)

Miscellaneous and Fasteners

Quantity Item

Separation

8 Explosive Nuts

8 Springs

8 Housings, Spring

Pressure & Venting

1 Valve, Vent

2 Fans, Circulation
1 Fill Valve

1 Filter

AR Tubing

Forward Canister

Structure

Canister

Separation Ring
Miscellaneous and Fasteners

Separation

1 V-band Assembly
4  Hot-wire Bolts

4  Springs

4  Housings, Spring

Total Adapter/Canister System Weight

5.2.1.5 Support Module Detail Weight Statement

Structure

Outer Wall

Structural Rings

Total Weight

25.0

Total Weight
213.0
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Support Module Weight (Continued) Total Weight

Honeycomb Fixed Solar Array Panel 85.0

Truss Tubes and Fittings 14.0

Miscellaneous and Fasteners 22.0
Qty. Item Reference
Radio 56.0
2  Exciter MM '69 9.0
2  Power Amplifiers MM '69 21. 0
1 Low Gain Antenna New Item 1.0
1 Receiver MM '69 8.0
1 High Gain Antenna New Item 3.0
AR Controls, Switches, Cables New Item 14.0
Command 8.0
1 Detector MM '69 3.0
1 Decoder and Power Supply MM '69 5.0
Telemetry 22.0
1 Commutator and Power Supply MM '69 9.0
1 Timing Generator MM '69 2.0
1 Data Processor MM '69 2.0
1 A/D Convertor MM '69 3.0
1 Transfer Register MM '69 2.0
1 Mode and Rate Control MM '69 2.0
1 Programmer MM '69 2.0
Relay 3.0
1 Receiver Hard Lander Final 1.0
1 Antenna Report Appendix D 2.0
Attitude Control 15,0
1 Star Sensor New Item 6.0
2  Sun Sensors New Item 1.0
1 Damper New Item 2.0
1 Electronics Unit New Item 6.0
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Adapter/Canister Weight (Continued) Total Weight

Power Supply 110, 0
1 Battery MM '69 31.0
1  Battery Charge and Boost Control MM '69 2.0
2  Boost Regulators MM '69 12.0
AR 2,4 kHz Inverters MM '69 6.0
1 Power Source Logic MM '69 (Modified) 8.0
antrol and Distribution New Items 7.0
(72 ft” Total) Solar Cells (Panel in

Structural Weight) 44.0
Computer & Sequencing 24.0
1 Timing and Event Control MM '69 13.0
1 Memory MM '69 4,0
1 Power Supply MM '69 7.0
Propulsion 95. 2
5  Thrust Chamber Assembly A T S.-C, D, &E 2.0
AR Propellant Tanks New Item 5.5
AR Pressurant Tanks New Item 6.7
AR Structural Supports and Brackets New Item 6.1
AR Lines, Valves, Regulators, etc. New Item 10.0
AR Pressurant and Propellant 63.0
AR Residual Propellant and Pressurant 1.9
Pyrotechnics 10. 0
2  Pyro Controller MM '69 9.0
AR Squibs 1.0
Mechanical Devices 19,0

AR Separation Mechanics (from Space-

craft Adapter) 13.0
AR Switches and Timers MM '69 (Modified) 1.0
1  Relay Antenna Deployment New Item 5.0

Mechanisms
Temperature Control 23.0
AR Heaters New Item 3.0
AR Shields, Blankets, Finishes New Item 12. 0
AR Louver Assembly MM '69 (Modified) 8.0
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Adapter/Canister Weight (Continued)

Cabling

AR Spacecraft Disconnect
AR Harness

Support Module Weight

New Item
New Item

Total Weight

TABLE 5. 2-1 MISSION SEQUENCE MASS PROPERTIES

41,0
6.
6]

0
35.0

639, 2

Mass Moments of

Weight Center-of-Gravity Inertia (slug—ftz**)
(1b) Z X Y

*Roll  Pitch Yaw | Roll | Pitch |Yaw

A. Spacecraft Launch Weight 2471.8 | 48.6 0.15 -0.26] 773 594 | 594
B. Spacecraft Injection Weight | 2335.0 | 48,7 0.16 -0.27] 646 532 | 532
C. Spacecraft Cruise Weight 2065.4 | 44.8 0.18 -0.30 476 373 1373
D. Entry Weight 1426.2 | 35.7 0. 26 -0.44| 241 156 156
E. Decelerated Weight 1011.5 | 39.1 0. 36 -0, 61 74 55 55
F. Lander Weight 809, 3 35.1 0.45 -0,77 67 37 36

*Distance from apex of aeroshell,

**Taken ahout the center-of-gravity
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